-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfusion_realtime.py
190 lines (140 loc) · 6.22 KB
/
fusion_realtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import open3d as o3d
from tqdm import tqdm
import time
# Define a function to split the point cloud with a line
def split_point_cloud(point_cloud, dir, slope, y_intercept):
# Calculate the z values for each point_cloud point when x is at its minimum
z_values = point_cloud[:, 2] - (slope * point_cloud[:, 0] + y_intercept)
# Use the sign of z_values to determine which side of the line each point lies on
cloud1_indices = (z_values < 0)
cloud2_indices = (z_values >= 0)
# Split the point cloud based on the indices
cloud1 = point_cloud[cloud1_indices]
cloud2 = point_cloud[cloud2_indices]
if dir <= 0: # 切左Kinect的点 用右侧的点来判断切哪边 斜率是正在上面 斜率是负在下面
return cloud1
else:
return cloud2
# Define a function to split the point cloud with a line
def split_point_cloud2(point_cloud, slope, y_intercept):
# Calculate the z values for each point_cloud point when x is at its minimum
z_values = point_cloud[:, 2] - (slope * point_cloud[:, 0] + y_intercept)
# Use the sign of z_values to determine which side of the line each point lies on
cloud1_indices = (z_values < 0)
cloud2_indices = (z_values >= 0)
# Split the point cloud based on the indices
cloud1 = point_cloud[cloud1_indices]
cloud2 = point_cloud[cloud2_indices]
# 第二下切永远在下面
return cloud2
#Define a function to split the point cloud with a line
def split_point_cloud3(point_cloud, dir, slope, y_intercept):
# Calculate the z values for each point_cloud point when x is at its minimum
z_values = point_cloud[:, 2] - (slope * point_cloud[:, 0] + y_intercept)
# Use the sign of z_values to determine which side of the line each point lies on
cloud1_indices = (z_values < 0)
cloud2_indices = (z_values >= 0)
# Split the point cloud based on the indices
cloud1 = point_cloud[cloud1_indices]
cloud2 = point_cloud[cloud2_indices]
if dir <= 0: # 切左Kinect的点 用右侧的点来判断切哪边 斜率是正在上面 斜率是负在下面
return cloud2
else:
return cloud1
# Define a function to split the point cloud with a line
def split_point_cloud4(point_cloud, slope, y_intercept):
# Calculate the z values for each point_cloud point when x is at its minimum
z_values = point_cloud[:, 2] - (slope * point_cloud[:, 0] + y_intercept)
# Use the sign of z_values to determine which side of the line each point lies on
cloud1_indices = (z_values < 0)
cloud2_indices = (z_values >= 0)
# Split the point cloud based on the indices
cloud1 = point_cloud[cloud1_indices]
cloud2 = point_cloud[cloud2_indices]
# 第二下切永远在下面
return cloud1
def find_closest_point(point_cloud, target_x, target_y):
distances = np.sqrt(np.sum((point_cloud[:, :2] - np.array([target_x, target_y]))**2, axis=1))
closest_index = np.argmin(distances)
closest_point = point_cloud[closest_index]
return closest_point
# Load the point cloud
pcd = o3d.io.read_point_cloud("F:\cuhk\calibrate0304\material/REALTRANS30.ply") #left
array = np.asarray(pcd.points)
color = np.asarray(pcd.colors)
# Load the point cloud2
pcd2 = o3d.io.read_point_cloud("F:\cuhk\calibrate0304\material/real_time30Rf.ply") #right
array2 = np.asarray(pcd2.points)
color2 = np.asarray(pcd2.colors)
# threshold and slice
stk = np.hstack((array2,color2))
#print(stk.shape)
maskb = (stk[:, 5] * 255 > 80) & (stk[:, 5] * 255 <= 255)
stk = stk[maskb]
maskr = (stk[:, 3] * 255 > 120) & (stk[:, 3] * 255 <= 255) #250
stk = stk[maskr]
maskg = (stk[:, 4] * 255 > 120) & (stk[:, 4] * 255 <= 255) #250
stk = stk[maskg]
array2 = stk[:,:3]
#print(stk)
#print('array:',array.shape)
color2 = stk[:,3:]
# Filter array2 based on min_x and min_y
combinep = np.vstack((array,array2))
combinec = np.vstack((color,color2))
pcdd = np.hstack((combinep,combinec))
#fiter part
# Find the index of the minimum z-coordinate
min_index = np.argmax(array[:, 2])
min_index2 = np.argmin(array2[:, 2])
# Extract x and y values from the minimum z point
min_x, min_y, min_z = array[min_index]
min_x2, min_y2, min_z2 = array2[min_index2]
print('left:',min_x, min_y, min_z)
print('right:',min_x2, min_y2, min_z2)
target_x = min_x
target_y = 100
mid_x, mid_y, mid_z = find_closest_point(array2, target_x, target_y)
print('mid:',mid_x, mid_y, mid_z)
# Calculate the slope of the line passing through (min_x, min_z) and (mid_x, mid_z)
# First line splitting
slope1 = (mid_z - min_z2) / (mid_x - min_x2)
perpendicular_slope1 = -1 / slope1
y_intercept1 = min_z2 - slope1 * min_x2
# direction
dir = (min_z2 - min_z) / (min_x2 - min_x)
cloud = split_point_cloud(pcdd, dir, slope1, y_intercept1)
# Second line splitting
slope2 = perpendicular_slope1
y_intercept2 = min_z2 - slope2 * min_x2
cloud= split_point_cloud2(cloud, slope2, y_intercept2)
# Third line splitting
slope3 = slope1
y_intercept3 = min_z - slope1 * (min_x-5)
cloud= split_point_cloud3(cloud, dir, slope3, y_intercept3)
# Fourth line splitting
slope4 = perpendicular_slope1
y_intercept4 = min_z - slope4 * min_x
cloud_final= split_point_cloud4(cloud, slope4, y_intercept4)
# save point cloud
pcd_final = o3d.geometry.PointCloud()
pcd_final.points = o3d.utility.Vector3dVector(cloud_final[:,:3])
pcd_final.colors = o3d.utility.Vector3dVector(cloud_final[:,3:])
o3d.io.write_point_cloud('F:\cuhk\calibrate0304\material/real_time_combine30fff.ply',pcd_final)
print('finish transformation')
#convex hull part
downsamplied_cloud = pcd_final.voxel_down_sample(voxel_size = 0.1)
downsamplied_cloud.estimate_normals(
search_param = o3d.geometry.KDTreeSearchParamHybrid(
radius=0.1, max_nn = 30
)
)
hull, _ = downsamplied_cloud.compute_convex_hull()
print(hull)
hull_ls = o3d.geometry.LineSet.create_from_triangle_mesh(hull)
hull_ls.paint_uniform_color((1, 0, 0))
o3d.visualization.draw_geometries([downsamplied_cloud, hull_ls])
print('done saving')
o3d.io.write_triangle_mesh("F:\cuhk\calibrate0304\material\convex hull/real_time.obj", hull)
print('done mesh')