forked from IrisRainbowNeko/genshin_auto_fish
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_sim.py
35 lines (29 loc) · 1.2 KB
/
test_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from utils.render import *
from fisher.models import FishNet
from fisher.environment import *
import torch
import argparse
from matplotlib.animation import FFMpegWriter
parser = argparse.ArgumentParser(description='Test Genshin finsing with DQN')
parser.add_argument('--n_states', default=3, type=int)
parser.add_argument('--n_actions', default=2, type=int)
parser.add_argument('--step_tick', default=12, type=int)
parser.add_argument('--model_dir', default='./output/fish_net_399.pth', type=str)
args = parser.parse_args()
if __name__ == '__main__':
writer = FFMpegWriter(fps=60)
render = PltRender(call_back=lambda: writer.grab_frame())
net = FishNet(in_ch=args.n_states, out_ch=args.n_actions)
env = Fishing_sim(step_tick=args.step_tick, drawer=render, stop_tick=10000)
net.load_state_dict(torch.load(args.model_dir))
net.eval()
state = env.reset()
with writer.saving(render.fig, 'out.mp4', 100):
for i in range(2000):
env.render()
state = torch.FloatTensor(state).unsqueeze(0)
action = net(state)
action = torch.argmax(action, dim=1).numpy()
state, reward, done = env.step(action)
if done:
break