forked from Zielon/metrical-tracker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmasking.py
208 lines (163 loc) · 6.91 KB
/
masking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2023 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: mica@tue.mpg.de
import os
import pickle
import numpy as np
import torch
import torch.nn as nn
import trimesh
from trimesh import Trimesh
def to_tensor(array, dtype=torch.float32):
if 'torch.tensor' not in str(type(array)):
return torch.tensor(array, dtype=dtype)
def to_np(array, dtype=np.float32):
if 'scipy.sparse' in str(type(array)):
array = array.todense()
return np.array(array, dtype=dtype)
class Struct(object):
def __init__(self, **kwargs):
for key, val in kwargs.items():
setattr(self, key, val)
class Masking(nn.Module):
def __init__(self):
dir = os.path.abspath(os.path.dirname(__file__))
super(Masking, self).__init__()
with open(f'{dir}/data/FLAME2020/FLAME_masks.pkl', 'rb') as f:
ss = pickle.load(f, encoding='latin1')
self.masks = Struct(**ss)
with open(f'{dir}/data/FLAME2020/generic_model.pkl', 'rb') as f:
ss = pickle.load(f, encoding='latin1')
flame_model = Struct(**ss)
self.color_mesh = trimesh.load(f'{dir}/data/head_template_color.obj', process=False)
self.color_mask = (np.array(self.color_mesh.visual.vertex_colors[:, 0:3]) == [255, 0, 0])[:, 0].nonzero()[0]
self.color_mask = np.array([i for i in self.color_mask if i not in self.get_mask_eyes()])
self.dtype = torch.float32
self.register_buffer('faces', to_tensor(to_np(flame_model.f, dtype=np.int64), dtype=torch.long))
self.register_buffer('vertices', to_tensor(to_np(flame_model.v_template), dtype=self.dtype))
def to_render_mask(self, mask):
face_mask = torch.zeros_like(self.vertices)[None]
face_mask[:, mask, :] = 1.0
return face_mask
def get_faces(self):
return self.faces
def get_color_mask(self):
return self.color_mask
def get_mask_face(self):
return self.masks.face
def get_mask_lips(self):
return self.masks.lips
def get_mask_rendering(self):
face_mask = torch.zeros_like(self.vertices)[None]
face_mask[:, self.masks.face, :] = 1.0
face_mask[:, self.masks.left_eyeball, :] = 1.0
face_mask[:, self.masks.right_eyeball, :] = 1.0
# face_mask = torch.ones_like(self.vertices)[None]
# face_mask[:, self.masks.boundary, :] = 0.0
# face_mask[:, self.masks.left_ear, :] = 0.0
# face_mask[:, self.masks.right_ear, :] = 0.0
return face_mask
def get_mask_depth(self):
face_mask = torch.ones_like(self.vertices)[None]
face_mask[:, self.masks.boundary, :] = 0.0
face_mask[:, self.masks.left_ear, :] = 0.0
face_mask[:, self.masks.right_ear, :] = 0.0
return face_mask
def get_mask_eyes(self):
left = self.masks.left_eyeball
right = self.masks.right_eyeball
return np.unique(np.concatenate((left, right)))
def get_mask_eyes_rendering(self):
eyes_mask = torch.zeros_like(self.vertices)[None]
eyes_mask[:, self.get_mask_eyes(), :] = 1.0
return eyes_mask
def get_mask_eyes_region(self):
left = self.masks.left_eye_region
right = self.masks.right_eye_region
mask = np.unique(np.concatenate((left, right)))
return mask
def get_mask_eyes_region_rendering(self):
left = self.masks.left_eye_region
right = self.masks.right_eye_region
mask = np.unique(np.concatenate((left, right)))
eyes_mask = torch.zeros_like(self.vertices)[None]
eyes_mask[:, mask, :] = 1.0
return eyes_mask
def get_mask_ears(self):
left = self.masks.left_ear
right = self.masks.right_ear
return np.unique(np.concatenate((left, right)))
def get_triangle_face_mask(self):
m = self.color_mask
return self.get_triangle_mask(m)
def get_triangle_color_face_mask(self):
m = self.masks.face
return self.get_triangle_mask(m)
def get_triangle_eyes_mask(self):
m = self.get_mask_eyes()
return self.get_triangle_mask(m)
def get_triangle_whole_mask(self):
m = self.get_whole_mask()
return self.get_triangle_mask(m)
def get_triangle_mask(self, m):
f = self.faces.cpu().numpy()
selected = []
for i in range(f.shape[0]):
l = f[i]
valid = 0
for j in range(3):
if l[j] in m:
valid += 1
if valid == 3:
selected.append(i)
return np.unique(selected)
def get_binary_triangle_mask(self):
mask = self.get_whole_mask()
faces = self.faces.cpu().numpy()
reduced_faces = []
for f in faces:
valid = 0
for v in f:
if v in mask:
valid += 1
reduced_faces.append(True if valid == 3 else False)
return reduced_faces
def get_masked_faces(self):
if self.masked_faces is None:
faces = self.faces.cpu().numpy()
vertices = self.vertices.cpu().numpy()
m = Trimesh(vertices=vertices, faces=faces, process=False)
m.update_faces(self.get_binary_triangle_mask())
self.masked_faces = torch.from_numpy(np.array(m.faces)).cuda().long()[None]
return self.masked_faces
def get_masked_mesh(self, vertices, triangle_mask):
if len(vertices.shape) == 2:
vertices = vertices[None]
B, N, V = vertices.shape
faces = self.faces.cpu().numpy()
masked_vertices = torch.empty(0, 0, 3).cuda()
masked_faces = torch.empty(0, 0, 3).cuda()
for i in range(B):
m = Trimesh(vertices=vertices[i].detach().cpu().numpy(), faces=faces, process=False)
m.update_faces(triangle_mask)
m.process()
f = torch.from_numpy(np.array(m.faces)).cuda()[None]
v = torch.from_numpy(np.array(m.vertices)).cuda()[None].float()
if masked_vertices.shape[1] != v.shape[1]:
masked_vertices = torch.empty(0, v.shape[1], 3).cuda()
if masked_faces.shape[1] != f.shape[1]:
masked_faces = torch.empty(0, f.shape[1], 3).cuda()
masked_vertices = torch.cat([masked_vertices, v])
masked_faces = torch.cat([masked_faces, f])
return masked_vertices, masked_faces