forked from Zielon/metrical-tracker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
469 lines (364 loc) · 15 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2023 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: mica@tue.mpg.de
import glob
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torchvision.transforms.functional import gaussian_blur
from tqdm import tqdm
from flame.mediapipe.landmarks import LIPS_LANDMARK_IDS, get_idx, NOSE_LANDMARK_IDS
l1_loss = nn.SmoothL1Loss(beta=0.1)
face_mask = torch.ones([1, 68, 2]).cuda().float()
nose_mask = torch.ones([1, 68, 2]).cuda().float()
oval_mask = torch.ones([1, 68, 2]).cuda().float()
face_mask[:, [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], :] = 0
nose_mask[:, [27, 28, 29, 30, 31, 32, 33, 34, 35], :] *= 4.0
oval_mask[:, [i for i in range(17)], :] *= 0.4
nose_mask_mp = torch.ones([1, 105, 2]).cuda().float()
face_mask_mp = torch.ones([1, 105, 2]).cuda().float()
nose_mask_mp[:, get_idx(NOSE_LANDMARK_IDS), :] *= 8.0
# face_mask_mp[:, get_idx(LEFT_EYE_LANDMARK_IDS) + get_idx(RIGHT_EYE_LANDMARK_IDS), :] *= 0.1
# Input is R, t in opencv spave
def opencv_to_opengl(R, t):
# opencv is row major
# opengl is column major
Rt = np.eye(4)
Rt[:3, :3] = R
Rt[:3, 3] = t
Rt[[1, 2]] *= -1 # opencv to opengl coordinate system swap y,z
'''
| R | t |
| 0 | 1 |
inverse is
| R^T | -R^T * t |
| 0 | 1 |
'''
# Transpose rotation (row to column wise) and adjust camera position for the new rotation matrix
Rt = np.linalg.inv(Rt)
return Rt
def dict2obj(d):
if isinstance(d, list):
d = [dict2obj(x) for x in d]
if not isinstance(d, dict):
return d
class C(object):
pass
o = C()
for k in d:
o.__dict__[k] = dict2obj(d[k])
return o
def l2_distance(verts1, verts2):
return torch.sqrt(((verts1 - verts2) ** 2).sum(2)).mean(1).mean()
def scale_lmks(opt_lmks, target_lmks, image_size):
h, w = image_size
size = torch.tensor([1 / w, 1 / h]).float().cuda()[None, None, ...]
opt_lmks = opt_lmks * size
target_lmks = target_lmks * size
return opt_lmks, target_lmks
def lmk_loss(opt_lmks, target_lmks, image_size, lmk_mask):
opt_lmks, target_lmks = scale_lmks(opt_lmks, target_lmks, image_size)
diff = torch.pow(opt_lmks - target_lmks, 2)
return (diff * lmk_mask).mean()
def face_lmk_loss(opt_lmks, target_lmks, image_size, is_mediapipe, lmk_mask):
opt_lmks, target_lmks = scale_lmks(opt_lmks, target_lmks, image_size)
diff = torch.pow(opt_lmks - target_lmks, 2)
if not is_mediapipe:
return (diff * face_mask * nose_mask * oval_mask * lmk_mask).mean()
return (diff * nose_mask_mp * lmk_mask).mean()
def oval_lmk_loss(opt_lmks, target_lmks, image_size, lmk_mask):
oval_ids = [i for i in range(17)]
opt_lmks, target_lmks = scale_lmks(opt_lmks, target_lmks, image_size)
diff = torch.pow(opt_lmks[:, oval_ids, :] - target_lmks[:, oval_ids, :], 2)
return (diff * lmk_mask[:, oval_ids, :]).mean()
def mouth_lmk_loss(opt_lmks, target_lmks, image_size, is_mediapipe, lmk_mask):
if not is_mediapipe:
mouth_ids = [i for i in range(49, 68)]
else:
mouth_ids = get_idx(LIPS_LANDMARK_IDS)
opt_lmks, target_lmks = scale_lmks(opt_lmks, target_lmks, image_size)
diff = torch.pow(opt_lmks[:, mouth_ids, :] - target_lmks[:, mouth_ids, :], 2)
return (diff * lmk_mask[:, mouth_ids, :]).mean()
def eye_closure_lmk_loss(opt_lmks, target_lmks, image_size, lmk_mask):
upper_eyelid_lmk_ids = [47, 46, 45, 29, 30, 31]
lower_eyelid_lmk_ids = [39, 40, 41, 25, 24, 23]
opt_lmks, target_lmks = scale_lmks(opt_lmks, target_lmks, image_size)
diff_opt = opt_lmks[:, upper_eyelid_lmk_ids, :] - opt_lmks[:, lower_eyelid_lmk_ids, :]
diff_target = target_lmks[:, upper_eyelid_lmk_ids, :] - target_lmks[:, lower_eyelid_lmk_ids, :]
diff = torch.pow(diff_opt - diff_target, 2)
return (diff * lmk_mask[:, upper_eyelid_lmk_ids, :]).mean()
def mouth_closure_lmk_loss(opt_lmks, target_lmks, image_size, lmk_mask):
upper_mouth_lmk_ids = [49, 50, 51, 52, 53, 61, 62, 63]
lower_mouth_lmk_ids = [59, 58, 57, 56, 55, 67, 66, 65]
opt_lmks, target_lmks = scale_lmks(opt_lmks, target_lmks, image_size)
diff_opt = opt_lmks[:, upper_mouth_lmk_ids, :] - opt_lmks[:, lower_mouth_lmk_ids, :]
diff_target = target_lmks[:, upper_mouth_lmk_ids, :] - target_lmks[:, lower_mouth_lmk_ids, :]
diff = torch.pow(diff_opt - diff_target, 2)
return (diff * lmk_mask[:, upper_mouth_lmk_ids, :]).mean()
def pixel_loss(opt_img, target_img, mask=None):
if mask is None:
mask = torch.ones_like(opt_img)
n_pixels = torch.sum((mask[:, 0, ...] > 0).int()).detach().float()
loss = (mask * (opt_img - target_img)).abs()
loss = torch.sum(loss) / n_pixels
return loss
def reg_loss(params):
return torch.mean(torch.sum(torch.square(params), dim=1))
def face_vertices(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, 3))
# pytorch only supports long and byte tensors for indexing
return vertices[faces.long()]
def vertex_normals(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of vertices, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
normals = torch.zeros(bs * nv, 3).to(device)
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] # expanded faces
vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()]
faces = faces.view(-1, 3)
vertices_faces = vertices_faces.view(-1, 3, 3)
normals.index_add_(0, faces[:, 1].long(),
torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1],
vertices_faces[:, 0] - vertices_faces[:, 1]))
normals.index_add_(0, faces[:, 2].long(),
torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2],
vertices_faces[:, 1] - vertices_faces[:, 2]))
normals.index_add_(0, faces[:, 0].long(),
torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0],
vertices_faces[:, 2] - vertices_faces[:, 0]))
normals = F.normalize(normals, eps=1e-6, dim=1)
normals = normals.reshape((bs, nv, 3))
# pytorch only supports long and byte tensors for indexing
return normals
def tensor_vis_landmarks(images, landmarks, color='g'):
vis_landmarks = []
images = images.cpu().numpy()
predicted_landmarks = landmarks.detach().cpu().numpy()
for i in range(images.shape[0]):
image = images[i]
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]].copy()
image = (image * 255)
predicted_landmark = predicted_landmarks[i]
image_landmarks = plot_all_kpts(image, predicted_landmark, color)
vis_landmarks.append(image_landmarks)
vis_landmarks = np.stack(vis_landmarks)
vis_landmarks = torch.from_numpy(
vis_landmarks[:, :, :, [2, 1, 0]].transpose(0, 3, 1, 2)) / 255. # , dtype=torch.float32)
return vis_landmarks
end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype=np.int32) - 1
def plot_kpts(image, kpts, color='r'):
''' Draw 68 key points
Args:
image: the input image
kpt: (68, 3).
'''
c = (0, 100, 255)
if color == 'r':
c = (0, 0, 255)
elif color == 'g':
c = (0, 255, 0)
elif color == 'b':
c = (255, 0, 0)
image = image.copy()
kpts = kpts.copy()
# for j in range(kpts.shape[0] - 17):
for j in range(kpts.shape[0]):
# i = j + 17
st = kpts[j, :2]
image = cv2.circle(image, (int(st[0]), int(st[1])), 1, c, 2)
if j in end_list:
continue
ed = kpts[j + 1, :2]
image = cv2.line(image, (int(st[0]), int(st[1])), (int(ed[0]), int(ed[1])), (255, 255, 255), 1)
return image
def plot_all_kpts(image, kpts, color='b'):
if color == 'r':
c = (0, 0, 255)
elif color == 'g':
c = (0, 255, 0)
elif color == 'b':
c = (255, 0, 0)
elif color == 'p':
c = (255, 100, 100)
image = image.copy()
kpts = kpts.copy()
for i in range(kpts.shape[0]):
st = kpts[i, :2]
image = cv2.circle(image, (int(st[0]), int(st[1])), 1, c, 2)
return image
def get_gaussian_pyramid(levels, input, kernel_size, sigma):
pyramid = []
images = input.clone()
for k, level in enumerate(reversed(levels)):
image_size, iters = level
size = [int(image_size[0]), int(image_size[1])]
images = F.interpolate(images, size, mode='bilinear', align_corners=False)
images = gaussian_blur(images, [kernel_size, kernel_size], sigma=[sigma, sigma] if sigma is not None else None)
pyramid.append((images, iters, size, image_size))
return list(reversed(pyramid))
def generate_triangles(h, w, margin_x=2, margin_y=5, mask=None):
# quad layout:
# 0 1 ... w-1
# w w+1
# .
# w*h
triangles = []
for x in range(margin_x, w - 1 - margin_x):
for y in range(margin_y, h - 1 - margin_y):
triangle0 = [y * w + x, y * w + x + 1, (y + 1) * w + x]
triangle1 = [y * w + x + 1, (y + 1) * w + x + 1, (y + 1) * w + x]
triangles.append(triangle0)
triangles.append(triangle1)
triangles = np.array(triangles)
triangles = triangles[:, [0, 2, 1]]
return triangles
def get_aspect_ratio(images):
h, w = images.shape[2:4]
ratio = w / h
if ratio > 1.0:
aspect_ratio = torch.tensor([1. / ratio, 1.0]).float().cuda()[None]
else:
aspect_ratio = torch.tensor([1.0, ratio]).float().cuda()[None]
return aspect_ratio
def is_optimizable(name, param_groups):
for param in param_groups:
if name.strip() in param['name']:
return True
return False
def merge_views(views):
grid = []
for view in views:
grid.append(np.concatenate(view, axis=2))
grid = np.concatenate(grid, axis=1)
# tonemapping
return to_image(grid)
def to_image(img):
img = (img.transpose(1, 2, 0) * 255)[:, :, [2, 1, 0]]
img = np.minimum(np.maximum(img, 0), 255).astype(np.uint8)
return img
def dump_point_cloud(name, view):
_, _, h, w = view.shape
np.savetxt(f'pc_{name}.xyz', view.permute(0, 2, 3, 1).reshape(h * w, 3).detach().cpu().numpy(), fmt='%f')
def round_up_to_odd(f):
return int(np.ceil(f) // 2 * 2 + 1)
def images_to_video(path, fps=25, src='video', video_format='DIVX'):
img_array = []
for filename in tqdm(sorted(glob.glob(f'{path}/{src}/*.jpg'))):
img = cv2.imread(filename)
height, width, layers = img.shape
size = (width, height)
img_array.append(img)
if len(img_array) > 0:
out = cv2.VideoWriter(f'{path}/video.avi', cv2.VideoWriter_fourcc(*video_format), fps, size)
for i in range(len(img_array)):
out.write(img_array[i])
out.release()
def grid_sample(image, optical, align_corners=False):
N, C, IH, IW = image.shape
_, H, W, _ = optical.shape
ix = optical[..., 0]
iy = optical[..., 1]
ix = ((ix + 1) / 2) * (IW - 1);
iy = ((iy + 1) / 2) * (IH - 1);
with torch.no_grad():
ix_nw = torch.floor(ix);
iy_nw = torch.floor(iy);
ix_ne = ix_nw + 1;
iy_ne = iy_nw;
ix_sw = ix_nw;
iy_sw = iy_nw + 1;
ix_se = ix_nw + 1;
iy_se = iy_nw + 1;
nw = (ix_se - ix) * (iy_se - iy)
ne = (ix - ix_sw) * (iy_sw - iy)
sw = (ix_ne - ix) * (iy - iy_ne)
se = (ix - ix_nw) * (iy - iy_nw)
with torch.no_grad():
torch.clamp(ix_nw, 0, IW - 1, out=ix_nw)
torch.clamp(iy_nw, 0, IH - 1, out=iy_nw)
torch.clamp(ix_ne, 0, IW - 1, out=ix_ne)
torch.clamp(iy_ne, 0, IH - 1, out=iy_ne)
torch.clamp(ix_sw, 0, IW - 1, out=ix_sw)
torch.clamp(iy_sw, 0, IH - 1, out=iy_sw)
torch.clamp(ix_se, 0, IW - 1, out=ix_se)
torch.clamp(iy_se, 0, IH - 1, out=iy_se)
image = image.view(N, C, IH * IW)
nw_val = torch.gather(image, 2, (iy_nw * IW + ix_nw).long().view(N, 1, H * W).repeat(1, C, 1))
ne_val = torch.gather(image, 2, (iy_ne * IW + ix_ne).long().view(N, 1, H * W).repeat(1, C, 1))
sw_val = torch.gather(image, 2, (iy_sw * IW + ix_sw).long().view(N, 1, H * W).repeat(1, C, 1))
se_val = torch.gather(image, 2, (iy_se * IW + ix_se).long().view(N, 1, H * W).repeat(1, C, 1))
out_val = (nw_val.view(N, C, H, W) * nw.view(N, 1, H, W) +
ne_val.view(N, C, H, W) * ne.view(N, 1, H, W) +
sw_val.view(N, C, H, W) * sw.view(N, 1, H, W) +
se_val.view(N, C, H, W) * se.view(N, 1, H, W))
return out_val
def get_flame_extra_faces():
return torch.from_numpy(
np.array(
[[1573, 1572, 1860],
[1742, 1862, 1572],
[1830, 1739, 1665],
[2857, 2862, 2730],
[2708, 2857, 2730],
[1862, 1742, 1739],
[1830, 1862, 1739],
[1852, 1835, 1666],
[1835, 1665, 1666],
[2862, 2861, 2731],
[1747, 1742, 1594],
[3497, 1852, 3514],
[1595, 1747, 1594],
[1746, 1747, 1595],
[1742, 1572, 1594],
[2941, 3514, 2783],
[2708, 2945, 2857],
[2941, 3497, 3514],
[1852, 1666, 3514],
[2930, 2933, 2782],
[2933, 2941, 2783],
[2862, 2731, 2730],
[2945, 2930, 2854],
[1835, 1830, 1665],
[2857, 2945, 2854],
[1572, 1862, 1860],
[2854, 2930, 2782],
[2708, 2709, 2943],
[2782, 2933, 2783],
[2708, 2943, 2945]])).cuda()[None, ...]