English | 简体中文
Oxford RobotCar Dataset 是一个大规模自动驾驶数据集, 包含了大量不同自动驾驶场景下的数据.
这里用到的是从原始的Oxford RobotCar数据集中筛选出一部分用于白天-夜晚深度估计的数据, 即Oxford-RobotCar-for-ADDS.
如果您要使用Oxford-RobotCar-for-ADDS, 请引用以下论文:
@article{maddern20171,
title={1 year, 1000 km: The oxford robotcar dataset},
author={Maddern, Will and Pascoe, Geoffrey and Linegar, Chris and Newman, Paul},
journal={The International Journal of Robotics Research},
volume={36},
number={1},
pages={3--15},
year={2017},
publisher={SAGE Publications Sage UK: London, England}
}
@inproceedings{liu2021self,
title={Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation},
author={Liu, Lina and Song, Xibin and Wang, Mengmeng and Liu, Yong and Zhang, Liangjun},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={12737--12746},
year={2021}
}
- 下载序列2014-12-09 中Bumblebee XB3的左目图像作为白天场景的训练集, 下载好的图像解压在同一文件夹下.
- 下载序列2014-12-16 中Bumblebee XB3的左目图像作为夜晚场景的训练集, 下载好的图像解压在同一文件夹下.
- 验证集的图像和深度真值从原始数据集中筛选, 下载地址如下:
附原始未处理数据下载地址:
https://videotag.bj.bcebos.com/Data/ADDS/1209_all_files.txt https://videotag.bj.bcebos.com/Data/ADDS/1216_all_files.txt https://videotag.bj.bcebos.com/Data/ADDS/day_train_all.7z.001 https://videotag.bj.bcebos.com/Data/ADDS/day_train_all.7z.002 https://videotag.bj.bcebos.com/Data/ADDS/day_train_all_fake_night.7z.001 https://videotag.bj.bcebos.com/Data/ADDS/day_train_all_fake_night.7z.002 https://videotag.bj.bcebos.com/Data/ADDS/day_val_451.7z https://videotag.bj.bcebos.com/Data/ADDS/day_val_451_gt.7z https://videotag.bj.bcebos.com/Data/ADDS/night_val_411.7z https://videotag.bj.bcebos.com/Data/ADDS/night_val_411_gt.7z
# 白天数据 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.001 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.002 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.003 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.004 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.005 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.006 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.007 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.008 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.009 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.010 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.011 https://videotag.bj.bcebos.com/Data/original-ADDS/day_train_all.7z.012 # 夜晚数据 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.001 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.002 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.003 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.004 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.005 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.006 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.007 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.008 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.009 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.010 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.011 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.012 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.013 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.014 https://videotag.bj.bcebos.com/Data/original-ADDS/night_train_all.7z.015
使用官方提供的工具箱robotcar-dataset-sdk 对序列2014-12-09和2014-12-16的图像完成去畸变.
由于我们使用自监督的方法, 需要筛选出动态帧用于训练. 筛选原则为帧间位姿变化大于0.1m则认为是动态帧. 经过筛选后获得训练集的序列.
将原始图像时间戳重命名为连续数字序列. 白天场景对应关系见1209_all_files.txt, 夜晚场景对应关系见1216_all_files.txt. 重命名后的数据格式如下:
├── oxford_processing
├── day_train_all #白天训练图像文件夹 (day_train_all.7z.001 ~ day_train_all.7z.012)
├── night_train_all #夜晚训练图像文件夹 (night_train_all.7z.001 ~ day_train_all.7z.015)
├── day_val_451 #白天验证图像文件夹 (day_val_451.7z)
├── day_val_451_gt #白天验证深度真值文件夹 (day_val_451_gt.7z)
├── night_val_411 #夜晚验证图像文件夹 (night_val_411.7z)
└── night_val_411_gt #夜晚验证深度真值文件夹 (night_val_411_gt.7z)
其中用于训练和验证的序列如下:
splits/oxford_day/train_files.txt # 白天训练序列
splits/oxford_night/train_files.txt # 夜晚训练序列
splits/oxford_day_451/val_files.txt # 白天验证序列
splits/oxford_night_411/val_files.txt # 夜晚验证序列
训练所用路径文本的下载地址:
https://videotag.bj.bcebos.com/Data/ADDS/train_files.txt
https://videotag.bj.bcebos.com/Data/ADDS/val_day_files.txt
https://videotag.bj.bcebos.com/Data/ADDS/val_night_files.txt
为了用我们的框架提取出白天和夜晚图像的共有信息,我们用CycleGAN生成白天-伪夜晚图像对,其中伪夜晚为CycleGAN生成的与白天对应的夜晚图像, 所有图像都缩放为192x640, 夜晚图像用直方图均衡化增强, 训练75个epoch, 最终得到Oxford-RobotCar-for-ADDS. 生成的白天-伪夜晚图像对数据格式如下,可直接用于ADDS-DepthNet的训练和验证:
data
└── oxford
├── splits
├── train_files.txt
├── val_day_files.txt
└── val_night_files.txt
└── oxford_processing_forADDS
├── day_train_all/ #白天训练图像文件夹 (解压自day_train_all.7z.001 ~ day_train_all.7z.002)
├── night_train_all/ #夜晚训练图像文件夹 (解压自night_train_all.7z.001 ~ day_train_all.7z.002)
├── day_val_451/ #白天验证图像文件夹 (解压自day_val_451.7z)
├── day_val_451_gt/ #白天验证深度真值文件夹 (解压自day_val_451_gt.7z)
├── night_val_411/ #夜晚验证图像文件夹 (解压自night_val_411.7z)
└── night_val_411_gt/ #夜晚验证深度真值文件夹 (解压自night_val_411_gt.7z)
其中用于训练和验证的序列与前述保持一致.