-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfig.py
98 lines (89 loc) · 4.1 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
class Config():
def __init__(self) -> None:
# Backbone
self.proj_root = os.path.expanduser(os.path.join('~'), 'codes/cosod')
self.bb = ['cnn-vgg16', 'cnn-vgg16bn', 'cnn-resnet50', 'trans-pvt'][3]
self.pvt_weights = ['../bb_weights/pvt_v2_b2.pth', ''][0]
# BN
self.use_bn = self.bb not in ['cnn-vgg16']
# Augmentation
self.preproc_methods = ['flip', 'enhance', 'rotate', 'crop', 'pepper'][:3]
# Components
self.consensus = ['', 'GCAM', 'GWM', 'SGS'][1]
self.dec_blk = ['ResBlk'][0]
self.GCAM_metric = ['online', 'offline', ''][0] if self.consensus else ''
# Training
self.batch_size = 48
self.loadN = 2
self.dec_att = ['', 'ASPP'][0]
self.auto_pad = ['', 'fixed', 'adaptive'][0]
self.optimizer = ['Adam', 'AdamW'][1]
self.lr = 1e-4
self.freeze = True
self.lr_decay_epochs = [-20] # Set to negative N to decay the lr in the last N-th epoch.
self.forward_per_dataset = True
# Adv
self.lambda_adv_g = 0.1 * 1 # turn to 0 to avoid adv training
self.lambda_adv_d = 1. * (self.lambda_adv_g > 0)
# Loss
losses = ['sal']
self.loss = losses[:]
self.cls_mask_operation = ['x', '+', 'c'][0]
# Loss + Triplet Loss
self.lambdas_sal_last = {
# not 0 means opening this loss
# original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
'bce': 30 * 1, # high performance
'iou': 0.5 * 1, # 0 / 255
'ssim': 1 * 0, # help contours
'mse': 150 * 0, # can smooth the saliency map
'reg': 100 * 0,
'triplet': 3 * 1,
}
self.db_output_decoder = False
self.refine = False
self.db_output_refiner = False
# Triplet Loss
self.triplet = ['_x5', 'mask'][:1]
self.triplet_loss_margin = 0.1
# Intermediate Layers
self.lambdas_sal_others = {
'bce': 0,
'iou': 0.,
'ssim': 0,
'mse': 0,
'reg': 0,
'triplet': 0,
}
self.output_number = 1
self.loss_sal_layers = 4 # used to be last 4 layers
self.loss_cls_mask_last_layers = 1 # used to be last 4 layers
if 'keep in range':
self.loss_sal_layers = min(self.output_number, self.loss_sal_layers)
self.loss_cls_mask_last_layers = min(self.output_number, self.loss_cls_mask_last_layers)
self.output_number = min(self.output_number, max(self.loss_sal_layers, self.loss_cls_mask_last_layers))
if self.output_number == 1:
for cri in self.lambdas_sal_others:
self.lambdas_sal_others[cri] = 0
self.conv_after_itp = False
self.complex_lateral_connection = False
# to control the quantitive level of each single loss by number of output branches.
self.loss_cls_mask_ratio_by_last_layers = 4 / self.loss_cls_mask_last_layers
for loss_sal in self.lambdas_sal_last.keys():
loss_sal_ratio_by_last_layers = 4 / (int(bool(self.lambdas_sal_others[loss_sal])) * (self.loss_sal_layers - 1) + 1)
self.lambdas_sal_last[loss_sal] *= loss_sal_ratio_by_last_layers
self.lambdas_sal_others[loss_sal] *= loss_sal_ratio_by_last_layers
self.lambda_cls_mask = 2.5 * self.loss_cls_mask_ratio_by_last_layers
self.lambda_cls = 3.
self.lambda_contrast = 250.
# others
self.self_supervision = False
self.label_smoothing = False
self.validation = False
self.rand_seed = 7
run_sh_file = [f for f in os.listdir('.') if 'go' in f and '.sh' in f] + [os.path.join('..', f) for f in os.listdir('..') if 'gco' in f and '.sh' in f]
with open(run_sh_file[0], 'r') as f:
lines = f.readlines()
self.val_last = int([l.strip() for l in lines if 'val_last=' in l][0].split('=')[-1])
self.save_step = int([l.strip() for l in lines if 'step=' in l][0].split('=')[-1])