-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreproc.py
75 lines (62 loc) · 2.47 KB
/
preproc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
from PIL import Image, ImageEnhance
import torch
import random
import numpy as np
from torchvision.transforms import functional as F
from torchvision.transforms import InterpolationMode
import numbers
import random
def cv_random_flip(img, label):
if random.random() > 0.5:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
label = label.transpose(Image.FLIP_LEFT_RIGHT)
return img, label
def random_crop(image, label):
border = 30
image_width = image.size[0]
image_height = image.size[1]
crop_win_width = np.random.randint(image_width - border, image_width)
crop_win_height = np.random.randint(image_height - border, image_height)
random_region = (
(image_width - crop_win_width) >> 1, (image_height - crop_win_height) >> 1, (image_width + crop_win_width) >> 1,
(image_height + crop_win_height) >> 1)
return image.crop(random_region), label.crop(random_region)
def random_rotate(image, label, angle=15):
mode = Image.BICUBIC
if random.random() > 0.8:
random_angle = np.random.randint(-angle, angle)
image = image.rotate(random_angle, mode)
label = label.rotate(random_angle, mode)
return image, label
def color_enhance(image):
bright_intensity = random.randint(5, 15) / 10.0
image = ImageEnhance.Brightness(image).enhance(bright_intensity)
contrast_intensity = random.randint(5, 15) / 10.0
image = ImageEnhance.Contrast(image).enhance(contrast_intensity)
color_intensity = random.randint(0, 20) / 10.0
image = ImageEnhance.Color(image).enhance(color_intensity)
sharp_intensity = random.randint(0, 30) / 10.0
image = ImageEnhance.Sharpness(image).enhance(sharp_intensity)
return image
def random_gaussian(image, mean=0.1, sigma=0.35):
def gaussianNoisy(im, mean=mean, sigma=sigma):
for _i in range(len(im)):
im[_i] += random.gauss(mean, sigma)
return im
img = np.asarray(image)
width, height = img.shape
img = gaussianNoisy(img[:].flatten(), mean, sigma)
img = img.reshape([width, height])
return Image.fromarray(np.uint8(img))
def random_pepper(img, N=0.0015):
img = np.array(img)
noiseNum = int(N * img.shape[0] * img.shape[1])
for i in range(noiseNum):
randX = random.randint(0, img.shape[0] - 1)
randY = random.randint(0, img.shape[1] - 1)
if random.randint(0, 1) == 0:
img[randX, randY] = 0
else:
img[randX, randY] = 255
return Image.fromarray(img)