-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
328 lines (282 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from random import seed
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from util import Logger, AverageMeter, set_seed
import os
import argparse
from dataset import get_loader
import torch.nn.functional as F
from config import Config
from loss import saliency_structure_consistency, SalLoss
from util import generate_smoothed_gt
from models.GCoNet import GCoNet
# Parameter from command line
parser = argparse.ArgumentParser(description='')
parser.add_argument('--model',
default='GCoNet',
type=str,
help="Options: '', ''")
parser.add_argument('--resume',
default=None,
type=str,
help='path to latest checkpoint')
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--start_epoch',
default=1,
type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('--trainset',
default='DUTS_class+coco-seg',
type=str,
help="Options: 'DUTS_class'")
parser.add_argument('--size',
default=256,
type=int,
help='input size')
parser.add_argument('--ckpt_dir', default=None, help='Temporary folder')
parser.add_argument('--testsets',
default='CoCA+CoSOD3k+CoSal2015',
type=str,
help="Options: 'CoCA', 'CoSal2015', 'CoSOD3k'")
args = parser.parse_args()
config = Config()
# Prepare dataset
root_dir = os.path.join(config.proj_root, 'data')
if 'DUTS_class' in args.trainset.split('+'):
train_img_path = os.path.join(root_dir, 'images/DUTS_class')
train_gt_path = os.path.join(root_dir, 'gts/DUTS_class')
train_loader = get_loader(
train_img_path,
train_gt_path,
args.size,
1,
max_num=config.batch_size,
istrain=True,
shuffle=True,
num_workers=8,
pin=True
)
if 'coco-seg' in args.trainset.split('+'):
train_img_path_seg = os.path.join(root_dir, 'images/coco-seg')
train_gt_path_seg = os.path.join(root_dir, 'gts/coco-seg')
train_loader_seg = get_loader(
train_img_path_seg,
train_gt_path_seg,
args.size,
1,
max_num=config.batch_size,
istrain=True,
shuffle=True,
num_workers=8,
pin=True
)
if 'coco-9k' in args.trainset.split('+'):
train_img_path_seg = os.path.join(root_dir, 'images/coco-9k')
train_gt_path_seg = os.path.join(root_dir, 'gts/coco-9k')
train_loader_seg = get_loader(
train_img_path_seg,
train_gt_path_seg,
args.size,
1,
max_num=config.batch_size,
istrain=True,
shuffle=True,
num_workers=8,
pin=True
)
# else:
# print('Unkonwn train dataset')
# print(args.dataset)
test_loaders = {}
for testset in args.testsets.split('+'):
test_loader = get_loader(
os.path.join(root_dir, 'images', testset), os.path.join(root_dir, 'gts', testset),
args.size, 1, istrain=False, shuffle=False, num_workers=8, pin=True
)
test_loaders[testset] = test_loader
if config.rand_seed:
set_seed(config.rand_seed)
# make dir for ckpt
os.makedirs(args.ckpt_dir, exist_ok=True)
# Init log file
logger = Logger(os.path.join(args.ckpt_dir, "log.txt"))
logger_loss_file = os.path.join(args.ckpt_dir, "log_loss.txt")
logger_loss_idx = 1
# Init model
device = torch.device("cuda")
model = GCoNet().to(device)
# Setting optimizer
if config.optimizer == 'AdamW':
optimizer = optim.AdamW(params=model.parameters(), lr=config.lr, weight_decay=1e-2)
elif config.optimizer == 'Adam':
optimizer = optim.Adam(params=model.parameters(), lr=config.lr, weight_decay=0)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[lde if lde > 0 else args.epochs + lde for lde in config.lr_decay_epochs],
gamma=0.1
)
if config.lambda_adv_g:
from adv import Discriminator
disc = Discriminator(channels=3, img_size=args.size).to(device)
Tensor = torch.cuda.FloatTensor if (True if torch.cuda.is_available() else False) else torch.FloatTensor
adv_criterion = nn.BCELoss()
if config.optimizer == 'AdamW':
optimizer_d = optim.AdamW(params=disc.parameters(), lr=config.lr, weight_decay=1e-2)
elif config.optimizer == 'Adam':
optimizer_d = optim.Adam(params=disc.parameters(), lr=config.lr, weight_decay=0)
lr_scheduler_d = torch.optim.lr_scheduler.MultiStepLR(
optimizer_d,
milestones=[lde if lde > 0 else args.epochs + lde for lde in config.lr_decay_epochs],
gamma=0.1
)
# Why freeze the backbone?...
if config.freeze:
for key, value in model.named_parameters():
if 'bb.' in key:
value.requires_grad = False
# log model and optimizer params
# logger.info("Model details:")
# logger.info(model)
logger.info("Optimizer details:")
logger.info(optimizer)
logger.info("Scheduler details:")
logger.info(lr_scheduler)
logger.info("Other hyperparameters:")
logger.info(args)
# Setting Loss
sal_loss = SalLoss()
def main():
# Optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
model.load_state_dict(torch.load(args.resume))
else:
logger.info("=> no checkpoint found at '{}'".format(args.resume))
for epoch in range(args.start_epoch, args.epochs+1):
train_loss = train(epoch)
# Save checkpoint
if epoch >= args.epochs - config.val_last and (args.epochs - epoch) % config.save_step == 0:
torch.save(model.state_dict(), os.path.join(args.ckpt_dir, 'ep{}.pth'.format(epoch)))
lr_scheduler.step()
if config.lambda_adv_g:
lr_scheduler_d.step()
def train(epoch):
loss_log = AverageMeter()
loss_log_triplet = AverageMeter()
global logger_loss_idx
model.train()
for batch_idx, (batch, batch_seg) in enumerate(zip(train_loader, train_loader_seg)):
inputs = batch[0].to(device).squeeze(0)
gts = batch[1].to(device).squeeze(0)
cls_gts = torch.LongTensor(batch[-1]).to(device)
return_values = model(inputs)
scaled_preds = return_values[0]
norm_features = None
if config.GCAM_metric:
norm_features = return_values[-1]
scaled_preds = scaled_preds[-min(config.loss_sal_layers+int(bool(config.refine)), 4+int(bool(config.refine))):]
# Tricks
if config.GCAM_metric:
loss_sal, loss_triplet = sal_loss(scaled_preds, gts, norm_features=norm_features, labels=cls_gts)
else:
loss_sal = sal_loss(scaled_preds, gts)
if config.label_smoothing:
loss_sal = 0.5 * (loss_sal + sal_loss(scaled_preds, generate_smoothed_gt(gts)))
if config.self_supervision:
H, W = inputs.shape[-2:]
images_scale = F.interpolate(inputs, size=(H//4, W//4), mode='bilinear', align_corners=True)
sal_scale = model(images_scale)[0][-1]
atts = scaled_preds[-1]
sal_s = F.interpolate(atts, size=(H//4, W//4), mode='bilinear', align_corners=True)
loss_ss = saliency_structure_consistency(sal_scale.sigmoid(), sal_s.sigmoid())
loss_sal += loss_ss * 0.3
# Loss
# since there may be several losses for sal, the lambdas for them (lambdas_sal) are inside the loss.py
loss = loss_sal * 1.0
if config.lambda_adv_g:
# gen
valid = Variable(Tensor(scaled_preds[-1].shape[0], 1).fill_(1.0), requires_grad=False)
adv_loss_g = adv_criterion(disc(scaled_preds[-1] * inputs), valid)
loss += adv_loss_g * config.lambda_adv_g
if config.forward_per_dataset:
loss_log.update(loss, inputs.size(0))
if config.GCAM_metric:
loss_log_triplet.update(loss_triplet, inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>#
inputs = batch_seg[0].to(device).squeeze(0)
gts = batch_seg[1].to(device).squeeze(0)
cls_gts = torch.LongTensor(batch_seg[-1]).to(device)
return_values = model(inputs)
scaled_preds = return_values[0]
norm_features = None
if config.GCAM_metric:
norm_features = return_values[-1]
scaled_preds = scaled_preds[-min(config.loss_sal_layers+int(bool(config.refine)), 4+int(bool(config.refine))):]
# Tricks
if config.GCAM_metric:
loss_sal, loss_triplet = sal_loss(scaled_preds, gts, norm_features=norm_features, labels=cls_gts)
else:
loss_sal = sal_loss(scaled_preds, gts)
if config.label_smoothing:
loss_sal = 0.5 * (loss_sal + sal_loss(scaled_preds, generate_smoothed_gt(gts)))
if config.self_supervision:
H, W = inputs.shape[-2:]
images_scale = F.interpolate(inputs, size=(H//4, W//4), mode='bilinear', align_corners=True)
sal_scale = model(images_scale)[0][-1]
atts = scaled_preds[-1]
sal_s = F.interpolate(atts, size=(H//4, W//4), mode='bilinear', align_corners=True)
loss_ss = saliency_structure_consistency(sal_scale.sigmoid(), sal_s.sigmoid())
loss_sal += loss_ss * 0.3
# Loss
if config.forward_per_dataset:
loss = loss_sal * 1.0
else:
loss += loss_sal * 1.0
if config.lambda_adv_g:
# gen
valid = Variable(Tensor(scaled_preds[-1].shape[0], 1).fill_(1.0), requires_grad=False)
adv_loss_g = adv_criterion(disc(scaled_preds[-1] * inputs), valid)
loss += adv_loss_g * config.lambda_adv_g
loss_log.update(loss, inputs.size(0))
if config.GCAM_metric:
loss_log_triplet.update(loss_triplet, inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
with open(logger_loss_file, 'a') as f:
f.write('step {}, {}\n'.format(logger_loss_idx, loss))
logger_loss_idx += 1
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<#
if config.lambda_adv_g and batch_idx % 2 == 0:
# disc
fake = Variable(Tensor(scaled_preds[-1].shape[0], 1).fill_(0.0), requires_grad=False)
optimizer_d.zero_grad()
adv_loss_real = adv_criterion(disc(gts * inputs), valid)
adv_loss_fake = adv_criterion(disc(scaled_preds[-1].detach() * inputs.detach()), fake)
adv_loss_d = (adv_loss_real + adv_loss_fake) / 2 * config.lambda_adv_d
adv_loss_d.backward()
optimizer_d.step()
# Logger
if batch_idx % 20 == 0:
# NOTE: Top2Down; [0] is the grobal slamap and [5] is the final output
info_progress = 'Epoch[{0}/{1}] Iter[{2}/{3}]'.format(epoch, args.epochs, batch_idx, len(train_loader))
info_loss = 'Train Loss: loss_sal: {:.3f}'.format(loss_sal)
if config.lambda_adv_g:
info_loss += ', loss_adv: {:.3f}, loss_adv_disc: {:.3f}'.format(adv_loss_g * config.lambda_adv_g, adv_loss_d * config.lambda_adv_d)
if config.GCAM_metric:
info_loss += ', loss_triplet: {:.3f}'.format(loss_triplet)
info_loss += ', Loss_total: {loss.val:.3f} ({loss.avg:.3f}) '.format(loss=loss_log)
logger.info(''.join((info_progress, info_loss)))
info_loss = '@==Final== Epoch[{0}/{1}] Train Loss: {loss.avg:.3f} '.format(epoch, args.epochs, loss=loss_log)
if config.GCAM_metric:
info_loss += 'Triplet Loss: {loss.avg:.3f} '.format(loss=loss_log_triplet)
logger.info(info_loss)
return loss_log.avg
if __name__ == '__main__':
main()