-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
65 lines (51 loc) · 1.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import time
from train import train
from generate import generate
from args import args
import utils
import torch
import os
from Models import Generator
flag =0
if flag == 1:
IS_TRAINING = True
else:
IS_TRAINING = False
def load_model(model_path):
G_model = Generator()
G_model.load_state_dict(torch.load(model_path))
print('# generator parameters:', sum(param.numel() for param in G_model.parameters()))
G_model.eval()
G_model.cuda()
return G_model
def main():
if IS_TRAINING:
data_dir_ir = utils.list_images(args.train_ir)
data_dir_vi = utils.list_images(args.train_vi)
train_data_ir = data_dir_ir
train_data_vi = data_dir_vi
print("\ntrain_data_ir num is ", len(train_data_ir))
print("\ntrain_data_vi num is ", len(train_data_vi))
train(train_data_ir, train_data_vi)
# testing
else:
print("\nBegin to generate pictures ...\n")
model_name = 'Final_G_Epoch_13.model'
test_imgs_path= "./test_imgs/tno/"
print('TNO date set begin to test')
result = "results"
model_path = os.path.join(os.getcwd(), 'models_training', model_name)
with torch.no_grad():
model = load_model(model_path)
model.eval()
model.cuda()
begin = time.time()
for i in range(25):
index = i + 1
ir_path = test_imgs_path+ "IR" + str(index) + ".png"
vis_path = test_imgs_path + "VIS" + str(index) + ".png"
generate(model, ir_path, vis_path, model_path, index, mode='L')
end = time.time()
print("consumption time of generating:%s " % (end - begin))
if __name__ == "__main__":
main()