-
Notifications
You must be signed in to change notification settings - Fork 3
/
simple_model.py
119 lines (100 loc) · 4.06 KB
/
simple_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import parl
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class MAModel(parl.Model):
def __init__(self,
obs_dim,
act_dim,
critic_in_dim,
continuous_actions=False):
super(MAModel, self).__init__()
self.actor_model = ActorModel(obs_dim, act_dim, continuous_actions)
self.critic_model = CriticModel(critic_in_dim)
def policy(self, obs):
return self.actor_model(obs)
def value(self, obs, act, with_q2):
return self.critic_model(obs, act, with_q2)
def get_actor_params(self):
return self.actor_model.parameters()
def get_critic_params(self):
return self.critic_model.parameters()
class ActorModel(parl.Model):
def __init__(self, obs_dim, act_dim, continuous_actions=False):
super(ActorModel, self).__init__()
self.continuous_actions = continuous_actions
hid1_size = 64
hid2_size = 64
self.fc1 = nn.Linear(
obs_dim,
hid1_size,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierUniform()))
self.fc2 = nn.Linear(
hid1_size,
hid2_size,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierUniform()))
self.fc3 = nn.Linear(
hid2_size,
act_dim,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierUniform()))
if self.continuous_actions:
std_hid_size = 64
self.std_fc = nn.Linear(
std_hid_size,
act_dim,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierUniform()))
def forward(self, obs):
hid1 = F.relu(self.fc1(obs))
hid2 = F.relu(self.fc2(hid1))
means = self.fc3(hid2)
if self.continuous_actions:
act_std = self.std_fc(hid2)
return (means, act_std)
return means
class CriticModel(parl.Model):
def __init__(self, critic_in_dim):
super(CriticModel, self).__init__()
hid1_size = 64
hid2_size = 64
out_dim = 1
self.q1 = nn.Sequential(
nn.Linear(critic_in_dim, hid1_size, weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.XavierUniform())),
nn.ReLU(),
nn.Linear(hid1_size, hid2_size, weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.XavierUniform())),
nn.ReLU(),
nn.Linear(hid2_size, out_dim, weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.XavierUniform()))
)
self.q2 = nn.Sequential(
nn.Linear(critic_in_dim, hid1_size, weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.XavierUniform())),
nn.ReLU(),
nn.Linear(hid1_size, hid2_size, weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.XavierUniform())),
nn.ReLU(),
nn.Linear(hid2_size, out_dim, weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.XavierUniform()))
)
def forward(self, obs_n, act_n, with_q2):
inputs = paddle.concat(obs_n + act_n, axis=1)
q1 = self.q1(inputs)
q1 = paddle.squeeze(q1, axis=1)
if with_q2:
q2 = self.q2(inputs)
q2 = paddle.squeeze(q2, axis=1)
return q1, q2
else:
return q1