forked from yandex/rep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
100 lines (79 loc) · 3.8 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from setuptools import setup, find_packages
import codecs
import os
import re
here = os.path.abspath(os.path.dirname(__file__))
def find_version(*file_paths):
# Open in Latin-1 so that we avoid encoding errors.
# Use codecs.open for Python 2 compatibility
with codecs.open(os.path.join(here, *file_paths), 'r', 'latin1') as f:
version_file = f.read()
# The version line must have the form
# __version__ = 'ver'
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]",
version_file, re.M)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.")
with codecs.open('README.md', encoding='utf-8') as f:
long_description = f.read()
with codecs.open('AUTHORS', encoding='utf-8') as f:
authors = f.read()
with codecs.open('requirements.txt', encoding='utf-8') as f:
requirements = f.read().split('\n')
setup(
name="rep",
version=find_version('rep', '__init__.py'),
description="infrastructure for computational experiments on shared big datasets",
long_description="""Reproducible Experiment Platform is a collaborative software infrastructure for computational experiments on shared big datasets, which allows obtaining reproducible, repeatable results and consistent comparisons of the obtained results.""",
url='https://github.com/yandex/rep',
# Author details
author=authors,
author_email='axelr@yandex-team.ru, antares@yandex-team.ru',
# Choose your license
license='Apache-2.0 License',
packages=['rep', 'rep.estimators', 'rep.data', 'rep.metaml', 'rep.report', 'rep.test'],
package_dir={'rep': 'rep'},
classifiers=[
# How mature is this project? Common values are
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
'Development Status :: 4 - Beta',
# Indicate who your project is intended for
'Intended Audience :: Computational Researchers, students, teachers, data scientists',
'Topic :: Machine Learning :: Computational Experiment',
# Pick your license as you wish (should match "license" above)
'License :: Apache-2.0 License',
# Specify the Python versions you support here. In particular, ensure
# that you indicate whether you support Python 2, Python 3 or both.
'Programming Language :: Python :: 2.7',
],
# What does your project relate to?
keywords='machine learning, ydf, high energy physics, particle physics, data analysis, reproducible experiment',
# You can just specify the packages manually here if your project is
# simple. Or you can use find_packages.
#packages=find_packages(exclude=["cern_utils", "docs", "tests*"]),
# List run-time dependencies here. These will be installed by pip when your
# project is installed.
install_requires=requirements,
# If there are data files included in your packages that need to be
# installed, specify them here. If using Python 2.6 or less, then these
# have to be included in MANIFEST.in as well.
#package_data={
# 'sample': ['package_data.dat'],
#},
# Although 'package_data' is the preferred approach, in some case you may
# need to place data files outside of your packages.
# see http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files
# In this case, 'data_file' will be installed into '<sys.prefix>/my_data'
#data_files=[('my_data', ['data/data_file'])],
# To provide executable scripts, use entry points in preference to the
# "scripts" keyword. Entry points provide cross-platform support and allow
# pip to create the appropriate form of executable for the target platform.
#entry_points={
# 'console_scripts': [
# 'sample=sample:main',
# ],
#},
)