-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnca.sage
executable file
·63 lines (45 loc) · 1.94 KB
/
nca.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env sage
from sage.symbolic.ring import SymbolicRing
var('J L v0 vp x T1 T2 A D')
sol = solve([
L == 0.5*(v0 + vp) * x,
vp == v0 + 0.25*J*x^2,
], v0, x)
print((-1/72*4^(1/3)*3^(1/3)*((I*4^(1/3)*3^(5/6) - 4^(1/3)*3^(1/3))*J^2*(-(9*L - sqrt(3)*sqrt((27*J*L^2 - 32*vp^3)/J))/J)^(4/3) + 2*4^(2/3)*3^(2/3)*J*vp*(-(9*L - sqrt(3)*sqrt((27*J*L^2 - 32*vp^3)/J))/J)^(2/3) + 48*vp^2*(-I*sqrt(3) - 1))/(J*(-(9*L - sqrt(3)*sqrt((27*J*L^2 - 32*vp^3)/J))/J)^(2/3))).simplify_full())
print(f"{len(sol)} solutions")
for i in range(len(sol)):
print(f"Solution {i}")
for eq in sol[i]:
print(eq.simplify_full())
P = (x - sol[0][1]) * (x - sol[1][1]) * (x - sol[2][1])
Pc = P.right().coefficients(x, sparse=False)
cs = ["d", "c", "b", "a"]
print("No constant velocity, no constant acceleration case (T1=T3, T2=T4=T5=T6=T7=0)")
print("v0:")
for i in range(3, -1, -1):
print(f"auto {cs[i]} = {Pc[i].simplify_full() if isinstance(Pc[i].parent(), SymbolicRing) else Pc[i]};")
print()
# No constant velocity, constant acceleration
sol = solve([
L == 0.5*(v0 + vp) * x,
vp == v0 - A^2/J + A*x,
T1 == A/J, T2 == x - 2*T1
], v0, x, T1, T2)
print(f"{len(sol)} solutions")
for i in range(len(sol)):
print(f"Solution {i}")
for eq in sol[i]:
print(eq.simplify_full())
P = (x - sol[0][1]) * (x - sol[1][1])
Pc = P.right().coefficients(x, sparse=False)
cs = ["c", "b", "a"]
print()
print("No constant velocity, constant acceleration case (T1=T3, T2 > 0, T4=T5=T6=T7=0)")
print("v0:")
for i in range(2, -1, -1):
print(f"auto {cs[i]} = {Pc[i].simplify()};")
#auto a = 1;
#auto b = -(A^2 + 2*J*vp)/(A*J);
#auto c = 2*L/A;
print((-4/3*sqrt(1/3)*sqrt(27*L**2 - 32*vp**3/J)/J + 4*L/J - 128/9*vp**3/(J**3*(sqrt(1/3)*sqrt(27*L**2 - 32*vp**3/J)/J - 3*L/J))).simplify_full())
print((-1/18*sqrt(3)*sqrt(27*L**2 - 32*vp**3/J)*J*L + 1/2*J*L**2 - 19/27*vp**3 + 256/9*vp**6/(J**3*(sqrt(3)*sqrt(27*L**2 - 32*vp**3/J)/J - 9*L/J)**2)).simplify_full())