-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmesh.h
568 lines (472 loc) · 18.9 KB
/
mesh.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
#pragma once
#include "Material.h"
#include "Texture.h"
/*
* Compute coefficients for a cubic polynomial
* p(s) = c0 + c1*s + c2*s^2 + c3*s^3
* such that
* p(0) = x0, p(1) = x1
* and
* p'(0) = t0, p'(1) = t1.
*/
inline void InitCubicSplineCoeffs(const float x0, const float x1, const float t0, const float t1,
float &c0, float &c1, float &c2, float &c3)
{
c0 = x0;
c1 = t0;
c2 = -3.0f*x0 + 3.0f*x1 - 2.0f*t0 - t1;
c3 = 2.0f*x0 - 2.0f*x1 + t0 + t1;
}
// standard uniform Catmull-Rom splines with tension 0.5
inline void InitCatmullCoeffs(const float x0, const float x1, const float x2, const float x3,
float &c0, float &c1, float &c2, float &c3)
{
InitCubicSplineCoeffs(x1, x2, 0.5f*(x2 - x0), 0.5f*(x3 - x1),
c0, c1, c2, c3);
}
// nonuniform Catmull-Rom splines; see
// http://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline
// http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
// P. J. Barry and R. N. Goldman: A recursive evaluation algorithm for a class of Catmull-Rom splines
//
inline void InitNonuniformCatmullCoeffs(float x0, float x1, float x2, float x3, float dt0, float dt1, float dt2,
float &c0, float &c1, float &c2, float &c3)
{
// compute tangents when parameterized in [t1,t2]
float t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;
float t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2;
// rescale tangents for parametrization in [0,1]
t1 *= dt1;
t2 *= dt1;
InitCubicSplineCoeffs(x1, x2, t1, t2, c0, c1, c2, c3);
}
template <int Dim>
class CatmullCurve;
// This uses centripetal Catmull-Rom splines for avoiding cusps and smoother results overall
template <>
class CatmullCurve<2>
{
public:
void SetCurve(const Vertex2D& v0, const Vertex2D& v1, const Vertex2D& v2, const Vertex2D& v3)
{
float dt0 = sqrtf((v1 - v0).Length());
float dt1 = sqrtf((v2 - v1).Length());
float dt2 = sqrtf((v3 - v2).Length());
// check for repeated control points
if (dt1 < 1e-4f) dt1 = 1.0f;
if (dt0 < 1e-4f) dt0 = dt1;
if (dt2 < 1e-4f) dt2 = dt1;
InitNonuniformCatmullCoeffs(v0.x, v1.x, v2.x, v3.x, dt0, dt1, dt2,
cx0, cx1, cx2, cx3);
InitNonuniformCatmullCoeffs(v0.y, v1.y, v2.y, v3.y, dt0, dt1, dt2,
cy0, cy1, cy2, cy3);
}
void SetCurve(const Vertex3Ds& v0, const Vertex3Ds& v1, const Vertex3Ds& v2, const Vertex3Ds& v3)
{
SetCurve(v0.xy(), v1.xy(), v2.xy(), v3.xy());
}
void GetPointAt(float t, Vertex2D * pv) const
{
const float t2 = t*t;
const float t3 = t2*t;
pv->x = cx3 * t3 + cx2 * t2 + cx1 * t + cx0;
pv->y = cy3 * t3 + cy2 * t2 + cy1 * t + cy0;
}
private:
float cx0, cx1, cx2, cx3;
float cy0, cy1, cy2, cy3;
};
template <>
class CatmullCurve<3>
{
public:
void SetCurve(const Vertex3Ds& v0, const Vertex3Ds& v1, const Vertex3Ds& v2, const Vertex3Ds& v3)
{
float dt0 = sqrtf((v1 - v0).Length());
float dt1 = sqrtf((v2 - v1).Length());
float dt2 = sqrtf((v3 - v2).Length());
// check for repeated control points
if (dt1 < 1e-4f) dt1 = 1.0f;
if (dt0 < 1e-4f) dt0 = dt1;
if (dt2 < 1e-4f) dt2 = dt1;
InitNonuniformCatmullCoeffs(v0.x, v1.x, v2.x, v3.x, dt0, dt1, dt2,
cx0, cx1, cx2, cx3);
InitNonuniformCatmullCoeffs(v0.y, v1.y, v2.y, v3.y, dt0, dt1, dt2,
cy0, cy1, cy2, cy3);
InitNonuniformCatmullCoeffs(v0.z, v1.z, v2.z, v3.z, dt0, dt1, dt2,
cz0, cz1, cz2, cz3);
}
void GetPointAt(float t, Vertex3Ds * pv) const
{
const float t2 = t*t;
const float t3 = t2*t;
pv->x = cx3 * t3 + cx2 * t2 + cx1 * t + cx0;
pv->y = cy3 * t3 + cy2 * t2 + cy1 * t + cy0;
pv->z = cz3 * t3 + cz2 * t2 + cz1 * t + cz0;
}
private:
float cx0, cx1, cx2, cx3;
float cy0, cy1, cy2, cy3;
float cz0, cz1, cz2, cz3;
};
class RenderVertex3D : public Vertex3Ds
{
public:
void set(const Vertex3Ds &v) { x = v.x; y = v.y; z = v.z; }
static const int Dim = 3;
bool smooth;
bool slingshot;
bool controlPoint; // Whether this point was a control point on the curve
bool padd; // Useless padding to align to 4bytes, should enhance access speeds
};
class RenderVertex : public Vertex2D
{
public:
void set(const Vertex3Ds &v) { x = v.x; y = v.y; }
void set(const RenderVertex &v) { *this = v; }
void set(const RenderVertex3D &v) { x = v.x; y = v.y; smooth = v.smooth; slingshot = v.slingshot; controlPoint = v.controlPoint; }
static const int Dim = 2;
bool smooth;
bool slingshot;
bool controlPoint; // Whether this point was a control point on the curve
bool padd; // Useless padding to align to 4bytes, should enhance access speeds
};
template <class CurveType, class VtxType, class VtxContType>
void RecurseSmoothLine(const CurveType & cc, const float t1, const float t2, const VtxType & vt1, const VtxType & vt2, VtxContType & vv, const float accuracy)
{
const float tMid = (t1 + t2)*0.5f;
VtxType vmid;
cc.GetPointAt(tMid, &vmid);
vmid.smooth = true; // Generated points must always be smooth, because they are part of the curve
vmid.slingshot = false; // Slingshots can't be along curves
vmid.controlPoint = false; // We created this point, so it can't be a control point
if (FlatWithAccuracy(vt1, vt2, vmid, accuracy))
{
// Add first segment point to array.
// Last point never gets added by this recursive loop,
// but that's where it wraps around to the next curve.
vv.push_back(vt1);
}
else
{
RecurseSmoothLine(cc, t1, tMid, vt1, vmid, vv, accuracy);
RecurseSmoothLine(cc, tMid, t2, vmid, vt2, vv, accuracy);
}
}
inline float GetDot(const Vertex2D * const pvEnd1, const Vertex2D * const pvJoint, const Vertex2D * const pvEnd2)
{
return (pvJoint->x - pvEnd1->x)*(pvJoint->y - pvEnd2->y) - (pvJoint->y - pvEnd1->y)*(pvJoint->x - pvEnd2->x);
}
inline bool FLinesIntersect(const Vertex2D * const Start1, const Vertex2D * const Start2, const Vertex2D * const End1, const Vertex2D * const End2)
{
const float x1 = Start1->x;
const float y1 = Start1->y;
const float x2 = Start2->x;
const float y2 = Start2->y;
const float x3 = End1->x;
const float y3 = End1->y;
const float x4 = End2->x;
const float y4 = End2->y;
const float d123 = (x2 - x1)*(y3 - y1) - (x3 - x1)*(y2 - y1);
if (d123 == 0.0f) // p3 lies on the same line as p1 and p2
return (x3 >= min(x1, x2) && x3 <= max(x2, x1));
const float d124 = (x2 - x1)*(y4 - y1) - (x4 - x1)*(y2 - y1);
if (d124 == 0.0f) // p4 lies on the same line as p1 and p2
return (x4 >= min(x1, x2) && x4 <= max(x2, x1));
if (d123 * d124 >= 0.0f)
return false;
const float d341 = (x3 - x1)*(y4 - y1) - (x4 - x1)*(y3 - y1);
if (d341 == 0.0f) // p1 lies on the same line as p3 and p4
return (x1 >= min(x3, x4) && x1 <= max(x3, x4));
const float d342 = d123 - d124 + d341;
if (d342 == 0.0f) // p1 lies on the same line as p3 and p4
return (x2 >= min(x3, x4) && x2 <= max(x3, x4));
return (d341 * d342 < 0.0f);
}
// RenderVertexCont = vector<> of RenderVertex (at the moment)
template <class RenderVertexCont>
inline bool AdvancePoint(const RenderVertexCont& rgv, const std::vector<unsigned int>& pvpoly, const unsigned int a, const unsigned int b, const unsigned int c, const int pre, const int post)
{
const RenderVertex * const pv1 = &rgv[a];
const RenderVertex * const pv2 = &rgv[b];
const RenderVertex * const pv3 = &rgv[c];
const RenderVertex * const pvPre = &rgv[pre];
const RenderVertex * const pvPost = &rgv[post];
if ((GetDot(pv1, pv2, pv3) < 0) ||
// Make sure angle created by new triangle line falls inside existing angles
// If the existing angle is a concave angle, then new angle must be smaller,
// because our triangle can't have angles greater than 180
((GetDot(pvPre, pv1, pv2) > 0) && (GetDot(pvPre, pv1, pv3) < 0)) || // convex angle, make sure new angle is smaller than it
((GetDot(pv2, pv3, pvPost) > 0) && (GetDot(pv1, pv3, pvPost) < 0)))
return false;
// Now make sure the interior segment of this triangle (line ac) does not
// intersect the polygon anywhere
// sort our static line segment
const float minx = min(pv1->x, pv3->x);
const float maxx = max(pv1->x, pv3->x);
const float miny = min(pv1->y, pv3->y);
const float maxy = max(pv1->y, pv3->y);
for (size_t i = 0; i < pvpoly.size(); ++i)
{
const RenderVertex * const pvCross1 = &rgv[pvpoly[i]];
const RenderVertex * const pvCross2 = &rgv[pvpoly[(i < pvpoly.size() - 1) ? (i + 1) : 0]];
if (pvCross1 != pv1 && pvCross2 != pv1 && pvCross1 != pv3 && pvCross2 != pv3 &&
(pvCross1->y >= miny || pvCross2->y >= miny) &&
(pvCross1->y <= maxy || pvCross2->y <= maxy) &&
(pvCross1->x >= minx || pvCross2->x >= minx) &&
(pvCross1->x <= maxx || pvCross2->y <= maxx) &&
FLinesIntersect(pv1, pv3, pvCross1, pvCross2))
return false;
}
return true;
}
inline float GetCos(const Vertex2D * const pvEnd1, const Vertex2D * const pvJoint, const Vertex2D * const pvEnd2)
{
const Vertex2D vt1(pvJoint->x - pvEnd1->x, pvJoint->y - pvEnd1->y);
const Vertex2D vt2(pvJoint->x - pvEnd2->x, pvJoint->y - pvEnd2->y);
const float dot = vt1.x*vt2.y - vt1.y*vt2.x;
return dot / sqrtf((vt1.x * vt1.x + vt1.y * vt1.y)*(vt2.x * vt2.x + vt2.y * vt2.y));
}
/*
inline float GetAngle(const Vertex2D * const pvEnd1, const Vertex2D * const pvJoint, const Vertex2D * const pvEnd2)
{
const float slope1 = (pvJoint->y - pvEnd1->y) / (pvJoint->x - pvEnd1->x);
const float slope2 = (pvJoint->y - pvEnd2->y) / (pvJoint->x - pvEnd2->x);
return atan2f((slope2-slope1),(1.0f+slope1*slope2));
}
*/
// Computes the normal for a single, plane polygon described by the indices and applies it either
// to the original vertices or to the vertices indexed by rgiApply.
//
// This functions uses Newell's method to compute the normal. It produces the correct result for
// a clockwise polygon in a left-handed coordinate system, or for a counterclockwise polygon in
// a right-handed coordinate system.
template <class VtxType, class IdxType>
void SetNormal(VtxType * const rgv, const IdxType * const rgi, const int count, void * prgvApply = NULL, const IdxType * rgiApply = NULL, int applycount = 0)
{
// If apply-to array is null, just apply the resulting normal to incoming array
VtxType * rgvApply = prgvApply ? (VtxType*)prgvApply : rgv;
if (rgiApply == NULL)
rgiApply = rgi;
if (applycount == 0)
applycount = count;
Vertex3Ds vnormal(0.0f, 0.0f, 0.0f);
for (int i = 0; i < count; ++i)
{
const int l = rgi[i];
const int m = rgi[(i < count - 1) ? (i + 1) : 0];
vnormal.x += (rgv[l].y - rgv[m].y) * (rgv[l].z + rgv[m].z);
vnormal.y += (rgv[l].z - rgv[m].z) * (rgv[l].x + rgv[m].x);
vnormal.z += (rgv[l].x - rgv[m].x) * (rgv[l].y + rgv[m].y);
}
vnormal.Normalize();
for (int i = 0; i < applycount; ++i)
{
const int l = rgiApply[i];
rgvApply[l].nx = vnormal.x;
rgvApply[l].ny = vnormal.y;
rgvApply[l].nz = vnormal.z;
}
}
// Calculate if two vectors are flat to each other
// accuracy is a float greater 4 and smaller 4000000 (tested this out)
inline bool FlatWithAccuracy(const Vertex2D & v1, const Vertex2D & v2, const Vertex2D & vMid, const float accuracy)
{
// compute double the signed area of the triangle (v1, vMid, v2)
const float dblarea = (vMid.x - v1.x)*(v2.y - v1.y) - (v2.x - v1.x)*(vMid.y - v1.y);
return (dblarea*dblarea < accuracy);
}
inline bool FlatWithAccuracy(const Vertex3Ds & v1, const Vertex3Ds & v2, const Vertex3Ds & vMid, const float accuracy)
{
// compute the square of double the signed area of the triangle (v1, vMid, v2)
const float dblareasq = CrossProduct(vMid - v1, v2 - v1).LengthSquared();
return (dblareasq < accuracy);
}
// find closest point, projected on xy plane
template <class VtxContType>
inline void ClosestPointOnPolygon(const VtxContType &rgv, const Vertex2D &pvin, Vertex2D &pvout, int &piseg, const bool closed)
{
const int count = (int)rgv.size();
float mindist = FLT_MAX;
piseg = -1; // in case we are not next to the line
int cloop = count;
if (!closed)
--cloop; // Don't check segment running from the end point to the beginning point
// Go through line segment, calculate distance from point to the line
// then pick the shortest distance
for (int i = 0; i < cloop; ++i)
{
const int p2 = (i < count - 1) ? (i + 1) : 0;
RenderVertex rgvi;
rgvi.set(rgv[i]);
RenderVertex rgvp2;
rgvp2.set(rgv[p2]);
const float A = rgvi.y - rgvp2.y;
const float B = rgvp2.x - rgvi.x;
const float C = -(A*rgvi.x + B*rgvi.y);
const float dist = fabsf(A*pvin.x + B*pvin.y + C) / sqrtf(A*A + B*B);
if (dist < mindist)
{
// Assuming we got a segment that we are closet to, calculate the intersection
// of the line with the perpenticular line projected from the point,
// to find the closest point on the line
const float D = -B;
const float F = -(D*pvin.x + A*pvin.y);
const float det = A*A - B*D;
const float inv_det = (det != 0.0f) ? 1.0f / det : 0.0f;
const float intersectx = (B*F - A*C)*inv_det;
const float intersecty = (C*D - A*F)*inv_det;
// If the intersect point lies on the polygon segment
// (not out in space), then make this the closest known point
if (intersectx >= (min(rgvi.x, rgvp2.x) - 0.1f) &&
intersectx <= (max(rgvi.x, rgvp2.x) + 0.1f) &&
intersecty >= (min(rgvi.y, rgvp2.y) - 0.1f) &&
intersecty <= (max(rgvi.y, rgvp2.y) + 0.1f))
{
mindist = dist;
const int seg = i;
pvout.x = intersectx;
pvout.y = intersecty;
piseg = seg;
}
}
}
}
enum WindingOrder
{
Clockwise,
CounterClockwise
};
// Find vertex along one edge of bounding box.
// In this case, we find smallest y; in case of tie also smallest x.
template <class RenderVertexCont>
inline size_t FindCornerVertex(const RenderVertexCont& vertices)
{
size_t minVertex = -1;
float minY = FLT_MAX;
float minXAtMinY = FLT_MAX;
for (size_t i = 0; i < vertices.size(); i++)
{
const RenderVertex vert = vertices[i];
const float y = vert.y;
if (y > minY)
continue;
if (y == minY)
if (vert.x >= minXAtMinY)
continue;
// Minimum so far.
minVertex = i;
minY = y;
minXAtMinY = vert.x;
}
return minVertex;
}
// Return value in (0..n-1).
// Works for i in (-n..+infinity).
// If need to allow more negative values, need more complex formula.
__forceinline int WrapAt(const int i, const int n)
{
// "+n": Moves (-n..) up to (0..).
return (i + n) % n;
}
// https://en.wikipedia.org/wiki/Curve_orientation#Orientation_of_a_simple_polygon
template <class RenderVertexCont>
inline WindingOrder DetermineWindingOrder(const RenderVertexCont& vertices)
{
size_t nVerts = vertices.size();
// If vertices duplicates first as last to represent closed polygon,
// skip last.
const RenderVertex lastV = vertices[nVerts - 1];
if (lastV.x == vertices[0].x && lastV.y == vertices[0].y)
nVerts--;
const size_t iMinVertex = FindCornerVertex(vertices);
// Orientation matrix:
// [ 1 xa ya ]
// O = | 1 xb yb |
// [ 1 xc yc ]
const RenderVertex a = vertices[WrapAt((int)iMinVertex - 1, (int)nVerts)];
const RenderVertex b = vertices[iMinVertex];
const RenderVertex c = vertices[WrapAt((int)iMinVertex + 1, (int)nVerts)];
// determinant(O) = (xb*yc + xa*yb + ya*xc) - (ya*xb + yb*xc + xa*yc)
const float detOrient = (b.x * c.y + a.x * b.y + a.y * c.x) - (a.y * b.x + b.y * c.x + a.x * c.y);
// TBD: check for "==0", in which case is not defined?
// Can that happen? Do we need to check other vertices / eliminate duplicate vertices?
return detOrient > 0.f ? Clockwise : CounterClockwise;
}
template <class RenderVertexCont, class Idx>
void PolygonToTriangles(const RenderVertexCont& rgv, std::vector<unsigned int>& pvpoly, std::vector<Idx>& pvtri, const bool support_both_winding_orders)
{
// There should be this many convex triangles.
// If not, the polygon is self-intersecting
const size_t tricount = pvpoly.size() - 2;
assert(tricount > 0);
// check if the polygon is in right orientation, otherwise flip it over
if(support_both_winding_orders && (DetermineWindingOrder(rgv) == Clockwise))
std::reverse(pvpoly.begin(), pvpoly.end());
for (size_t l = 0; l < tricount; ++l)
//while (pvpoly->Size() > 2)
{
for (size_t i = 0; i < pvpoly.size(); ++i)
{
const size_t s = pvpoly.size();
const unsigned int pre = pvpoly[(i == 0) ? (s - 1) : (i - 1)];
const unsigned int a = pvpoly[i];
const unsigned int b = pvpoly[(i < s - 1) ? (i + 1) : 0];
const unsigned int c = pvpoly[(i < s - 2) ? (i + 2) : ((i + 2) - s)];
const unsigned int post = pvpoly[(i < s - 3) ? (i + 3) : ((i + 3) - s)];
if (AdvancePoint(rgv, pvpoly, a, b, c, pre, post))
{
pvtri.push_back(a);
pvtri.push_back(c);
pvtri.push_back(b);
pvpoly.erase(pvpoly.begin() + ((i < s - 1) ? (i + 1) : 0)); // b
break;
}
}
}
}
template <typename T>
void ComputeNormals(Vertex3D_NoTex2* const vertices, const unsigned int numVertices, const T* const indices, const unsigned int numIndices)
{
for (unsigned i = 0; i < numVertices; i++)
{
Vertex3D_NoTex2 &v = vertices[i];
v.nx = v.ny = v.nz = 0.0f;
}
for (unsigned i = 0; i < numIndices; i += 3)
{
Vertex3D_NoTex2& A = vertices[indices[i]];
Vertex3D_NoTex2& B = vertices[indices[i + 1]];
Vertex3D_NoTex2& C = vertices[indices[i + 2]];
const Vertex3Ds e0(B.x - A.x, B.y - A.y, B.z - A.z);
const Vertex3Ds e1(C.x - A.x, C.y - A.y, C.z - A.z);
Vertex3Ds normal = CrossProduct(e0, e1);
normal.NormalizeSafe();
A.nx += normal.x; A.ny += normal.y; A.nz += normal.z;
B.nx += normal.x; B.ny += normal.y; B.nz += normal.z;
C.nx += normal.x; C.ny += normal.y; C.nz += normal.z;
}
for (unsigned i = 0; i < numVertices; i++)
{
Vertex3D_NoTex2 &v = vertices[i];
const float l = v.nx*v.nx + v.ny*v.ny + v.nz*v.nz;
if (l <= FLT_MIN) // degenerate?
{
v.nx = 0.f;
v.ny = 0.f;
v.nz = 0.f; // could also use up vector then, but this way easier to catch visually (1.f here)
}
else
{
const float inv_l = 1.0f/sqrtf(l);
v.nx *= inv_l;
v.ny *= inv_l;
v.nz *= inv_l;
}
}
}
template <typename T>
void ComputeNormals(std::vector<Vertex3D_NoTex2>& vertices, const std::vector<T>& indices)
{
ComputeNormals(vertices.data(), (unsigned int)vertices.size(), indices.data(), (unsigned int)indices.size());
}