This repository has been archived by the owner on Aug 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mrk2.py
71 lines (53 loc) · 1.5 KB
/
mrk2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import nltk
from nltk.stem.lancaster import LancasterStemmer
import numpy as np
import tflearn
import random
import json
stemmer = LancasterStemmer()
with open("Documents/GitHub/ai-project/intents.json") as file:
data = json.load(file)
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w not in "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = np.array(training)
output = np.array(output)
input_size = len(training[0])
output_size = len(output[0])
print(training.dtype)
print(output.dtype)
net=tflearn.input_data(shape=[None,len(training[0])])
net=tflearn.fully_connected(net, 8)
net=tflearn.fully_connected(net, 8)
net=tflearn.fully_connected(net,len(output[0]),activation="softmax")
net=tflearn.regression(net)
model=tflearn.DNN(net)
model.fit(training,output,n_epoch=600,batch_size=8,show_metric=True)
model.save("Documents/GitHub/ai-project/model.tflearn")