-
Notifications
You must be signed in to change notification settings - Fork 76
/
aaplot.py
280 lines (250 loc) · 11.5 KB
/
aaplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
'''
===================
aaplot.py
===================
Functions to plot stuff.
Created May 2015 by Alessandro Amato del Monte (alessandro.adm@gmail.com)
HISTORY
2015-05-01 first public release.
'''
import numpy as np
import matplotlib.pyplot as plt
import agilegeo
from pandas import Series, DataFrame
import pandas as pd
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def ampspec(signal,sr):
'''
Calculates amplitude spectrum of a signal with FFT.
'''
from scipy.fftpack import fft, fftfreq
from scipy.interpolate import interp1d
SIGNAL = fft(signal)
freq = fftfreq(signal.size, d=sr)
# Chop off the negative frequencies
keep = freq>=0
SIGNAL = np.abs(SIGNAL[keep])
freq = freq[keep]
freq0=np.linspace(freq.min(),freq.max()/2,freq.size*10)
f = interp1d(freq, SIGNAL, kind='cubic')
return f(freq0),freq0
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def plot_wavelet(wavelet,time):
'''
Plots wavelet.
Required timescale can be calculated with:
>>> time=np.arange(-duration/2, duration/2 , dt)
where duration and dt (sample rate) are same inputs given to wavelet calculation.
'''
plt.figure(figsize=(8,5))
plt.plot(time,wavelet,lw=2,color='black')
plt.fill_between(time,wavelet,0,wavelet>0.0,interpolate=False,hold=True,color='blue', alpha = 0.5)
plt.fill_between(time,wavelet,0,wavelet<0.0,interpolate=False,hold=True,color='red', alpha = 0.5)
plt.grid()
plt.xlim(-0.1,0.1)
locs,labels = plt.xticks()
plt.xticks(locs[:-1], map(lambda x: "%d" % x, locs[:-1]*1000))
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def plot_wavelet_spectrum(wavelet,time,dt):
'''
Plots wavelet and its amplitude spectrum.
Required timescale can be calculated with:
>>> time=np.arange(-duration/2, duration/2 , dt)
where duration and dt (sample rate) are same inputs given to wavelet calculation.
'''
wavelet_fft,wavelet_freq=ampspec(wavelet,dt)
f,ax=plt.subplots(2)
ax[0].plot(time,wavelet,lw=2,color='black')
ax[0].grid()
ax[1].plot(wavelet_freq,wavelet_fft,lw=2,color='black')
ax[1].grid()
ax[1].set_xlim(0,250)
# from scipy.signal import argrelmax
# peak_freq=wavelet_freq[argrelmax(wavelet_fft)][0]
# ax[1].set_xlim(0,peak_freq*4)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def plot_rock_grid(data,zz=1):
'''
Plots rock model created with make_wedge.
INPUT
data: 2D numpy array containing values from 1 to 3
zz: vertical sample rate in depth
'''
import matplotlib.cm as cm
cc=cm.get_cmap('copper_r',3)
plt.figure(figsize=(12,6))
plt.imshow(data,extent=[0,data.shape[1],data.shape[0]*zz,0],cmap=cc,interpolation='none',aspect='auto')
cbar=plt.colorbar()
cbar.set_ticks(range(1,4)); cbar.set_ticklabels(range(1,4))
plt.grid()
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def plot_density(data,zz=1,seismic=True,lag=0):
'''
Density plot of generic 2D numpy array (seismic or any property e.g., velocity).
INPUT
data: 2D numpy array containing seismic or elastic property
zz: vertical sample rate in depth or time
seismic: True to use red-blue colorscale
lag: lagtime at the top of the data
'''
plt.figure(figsize=(12,6))
if seismic==True:
# clip=np.amax(abs(data))
clip=abs(np.percentile(data, 0.999))
plt.imshow(data,extent=[0,data.shape[1],data.shape[0]*zz+lag,0+lag],cmap='RdBu',vmax=clip,vmin=-clip,aspect='auto')
else:
# plt.imshow(data,extent=[0,data.shape[1],data.shape[0]*zz+lag,0+lag],cmap='PiYG',aspect='auto')
plt.imshow(data,extent=[0,data.shape[1],data.shape[0]*zz+lag,0+lag],cmap='nipy_spectral',aspect='auto')
plt.colorbar(), plt.grid()
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def plot_wiggle(data,zz=1,skip=1,gain=1,alpha=0.7,black=False):
'''
Wiggle plot of generic 2D numpy array.
INPUT
data: 2D numpy array
zz: vertical sample rate in depth or time
skip: interval to choose traces to draw
gain: multiplier applied to each trace
'''
[n_samples,n_traces]=data.shape
t=range(n_samples)
plt.figure(figsize=(9.6,6))
for i in range(0, n_traces,skip):
trace=gain*data[:,i] / np.max(np.abs(data))
plt.plot(i+trace,t,color='k', linewidth=0.5)
if black==False:
plt.fill_betweenx(t,trace+i,i, where=trace+i>i, facecolor=[0.6,0.6,1.0], linewidth=0)
plt.fill_betweenx(t,trace+i,i, where=trace+i<i, facecolor=[1.0,0.7,0.7], linewidth=0)
else:
plt.fill_betweenx(t,trace+i,i, where=trace+i>i, facecolor='black', linewidth=0, alpha=alpha)
locs,labels=plt.yticks()
plt.yticks(locs,[n*zz for n in locs.tolist()])
plt.grid()
plt.gca().invert_yaxis()
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def plot_partial_stacks(near,mid,far,zz=1,label=''):
'''
Density plot of near, mid, far stacks.
INPUT
near, mid, far: 2D numpy arrays containing seismic
zz: vertical sample rate in twt
label
'''
clip=np.amax([abs(near), abs(mid), abs(far)])
f, ax = plt.subplots(nrows=1, ncols=3, figsize=(15,5))
im0=ax[0].imshow(near,extent=[0,near.shape[1],near.shape[0]*zz,0],cmap='RdBu',vmax=clip,vmin=-clip,aspect='auto')
ax[0].set_title(label+' (NEAR)',fontsize='small')
im1=ax[1].imshow(mid,extent=[0,near.shape[1],near.shape[0]*zz,0],cmap='RdBu',vmax=clip,vmin=-clip,aspect='auto')
ax[1].set_title(label+' (MID)',fontsize='small')
im2=ax[2].imshow(far,extent=[0,near.shape[1],near.shape[0]*zz,0],cmap='RdBu',vmax=clip,vmin=-clip,aspect='auto')
ax[2].set_title(label+' (FAR)',fontsize='small')
ax[0].set_ylabel('twt [s]')
cax = f.add_axes([0.925, 0.25, 0.02, 0.5])
cbar=f.colorbar(im0, cax=cax, orientation='vertical')
for i in range(len(ax)):
ax[i].grid()
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def update_xlabels(min_thickness,max_thickness,n_traces):
'''
Updates x_labels with actual thickness of model (in meters).
'''
locs,labels=plt.xticks()
incr=(max_thickness-min_thickness)/float(n_traces)
newlabels=(locs[1:-1])*incr+min_thickness
plt.xticks(locs[1:-1],[str(round(x,1))+'m' for x in newlabels])
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def update_ylabels(lag,thickness,vel):
'''
Updates y_labels to add lag in two-way-time,
given velocity of top layer having certain thickness.
'''
locs,labels=plt.yticks()
lagtop=thickness/vel*2
plt.yticks(locs[:-1],[round(y+lag-lagtop,3) for y in locs])
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def wellplot(ll,ztop=None,zbot=None):
'''
wellplot (c) aadm 2014
Simple logview plot.
Needs in input a Pandas dataframe containing log structure, and optionally depth range.
HISTORY
2014-08-04 updated with depth range input
2014-06-30 first version
'''
if ztop==None:
ztop=ll.DEPTH.min()
if zbot==None:
zbot=ll.DEPTH.max()
velmin=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['VS']].min().values
velmax=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['VP']].max().values
dmin=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['RHO']].min().values
dmax=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['RHO']].max().values
ipmin=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['IP']].min().values
ipmax=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['IP']].max().values
rmin=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['VPVS']].min().values
rmax=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['VPVS']].max().values
swplot=True if 'SW' in ll.columns else False
f, ax = plt.subplots(nrows=1, ncols=5, sharey=True, figsize=(12,6))
if swplot:
ll.plot(x='SW', y='DEPTH',ax=ax[0], style='b', label='Sw');
ll.plot(x='VSH', y='DEPTH', ax=ax[0], style='g', label='Vsh');
ll.plot(x='PHI', y='DEPTH', ax=ax[0], style='k', label='phi');
ll.plot(x='VP', y='DEPTH', ax=ax[1], style='k');
ll.plot(x='VS', y='DEPTH', ax=ax[1], style='r');
ll.plot(x='RHO', y='DEPTH', ax=ax[2], style='k');
ll.plot(x='IP', y='DEPTH', ax=ax[3], style='k');
ll.plot(x='VPVS', y='DEPTH', ax=ax[4], style='k');
ax[0].set_xlabel('Vcl/Sw/phi'), ax[0].set_xlim(-0.1,1.1), ax[0].set_ylim(ztop,zbot)
ax[1].set_xlabel('Velocities (m/s)'), ax[1].set_xlim(velmin-velmin*.1,velmax+velmax*.1), ax[1].set_ylim(ztop,zbot)
ax[2].set_xlabel('Density (g/cc)'), ax[2].set_xlim(dmin-dmin*.01,dmax+dmax*.01), ax[2].set_ylim(ztop,zbot)
ax[3].set_xlabel('Ip (m/s*g/cc)'), ax[3].set_xlim(ipmin-ipmin*.1,ipmax+ipmax*.1), ax[3].set_ylim(ztop,zbot)
ax[4].set_xlabel('Vp/Vs'), ax[4].set_xlim(rmin-rmin*.01,rmax+rmax*.01), ax[4].set_ylim(ztop,zbot)
ax[0].invert_yaxis()
for i in range(len(ax)):
ax[i].locator_params(axis='x', nbins=4)
ax[0].legend(fontsize='small', loc='lower left')
ax[1].legend(fontsize='small', loc='lower left')
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def plotlfc(x,y,z,bb=30,colormap='Paired'):
'''
plotlfc (c) aadm 2014
Crossplot of x vs y color coded to z.
Useful for crossplotting two log properties color coded to a LFC (litho-fluid class, or facies).
Plots the same data twice, first as scatterpoints then as contours after calculating a 2D histogram.
Optional parameter bb controls 2D histogram bins (default=30).
HISTORY
2014-05-19 first version
'''
import matplotlib.cm
import matplotlib.colors
nfacies=len(np.unique(z))
#.......................... qui di seguito un accrocchio per discretizzare la colormap
colori = plt.get_cmap(colormap, nfacies)
cNorm=matplotlib.colors.Normalize(vmin=1, vmax=nfacies+1)
scalarMap=matplotlib.cm.ScalarMappable(norm=cNorm,cmap=colori)
ccc=scalarMap.to_rgba(range(1,nfacies+1))
#......................................................................................
fig, ax = plt.subplots(1, figsize=(8,6))
ax.scatter(x, y, 20, z, cmap=colori, alpha=0.7, marker='o', edgecolors='none')
colorbar_index(ncolors=nfacies, cmap=colori)
dimfig=[ax.get_position().x0, ax.get_position().y0, ax.get_position().x1, ax.get_position().y1]
fig, ax = plt.subplots(1, figsize=(8,6))
for i in np.unique(z):
H, xedges, yedges = np.histogram2d(x[z==i], y[z==i], bins=bb) # normed=False (default), returns the number of samples in each bin.
H = blur_image(H,3)
xi = np.linspace(np.min(x[z==i]), np.max(x[z==i]), H.shape[0])
yi = np.linspace(np.min(y[z==i]), np.max(y[z==i]), H.shape[0])
cset=plt.contour(xi, yi, H, 2, linewidths=2, colors=matplotlib.colors.rgb2hex(ccc[int(i)-1]), label=('LFC=%d' %i))
plt.subplots_adjust(dimfig[0],dimfig[1],dimfig[2],dimfig[3])
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def colorbar_index(ncolors, cmap):
'''
Found somewhere on stackoverflow,
useful to get a colorbar for discrete colors with values written in the middle of each color patch.
'''
mappable = plt.cm.ScalarMappable(cmap=cmap)
mappable.set_array([])
mappable.set_clim(-0.5, ncolors+0.5)
colorbar = plt.colorbar(mappable)
colorbar.set_ticks(np.linspace(0, ncolors, ncolors))
colorbar.set_ticklabels(range(0,ncolors+1))