-
Notifications
You must be signed in to change notification settings - Fork 76
/
aawedge.py
447 lines (384 loc) · 15.1 KB
/
aawedge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
'''
===================
aawedge.py
===================
Functions to build and plot seismic wedges.
Created April 2015 by Alessandro Amato del Monte (alessandro.adm@gmail.com)
Heavily inspired by Matt Hall and Evan Bianco's blog posts and code:
http://nbviewer.ipython.org/github/agile-geoscience/notebooks/blob/master/To_make_a_wedge.ipynb
http://nbviewer.ipython.org/github/kwinkunks/notebooks/blob/master/Spectral_wedge.ipynb
http://nbviewer.ipython.org/github/kwinkunks/notebooks/blob/master/Faster_wedges.ipynb
http://nbviewer.ipython.org/github/kwinkunks/notebooks/blob/master/Variable_wedge.ipynb
Also see Wes Hamlyn's tutorial on Leading Edge "Thin Beds, tuning and AVO" (December 2014):
https://github.com/seg/tutorials/tree/master/1412_Tuning_and_AVO
HISTORY
2015-05-07 updated make_synth, now works also on 1D arrays.
2015-04-10 first public release.
'''
import numpy as np
import matplotlib.pyplot as plt
import agilegeo
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def make_wedge(n_traces,encasing_thickness,min_thickness,max_thickness,dz=0.1):
'''
Creates wedge-shaped model made of 3 units with variable thickness.
INPUT
n_traces
encasing_thickness
min_thickness
max_thickness
dz: vertical sample rate, by default 0.1 m
OUTPUT
wedge: 2D numpy array containing wedge-shaped model made of 3 units
'''
encasing_thickness *= (1./dz)
min_thickness *= (1./dz)
max_thickness *= (1./dz)
deltaz=float(max_thickness-min_thickness)/float(n_traces)
n_samples=max_thickness+encasing_thickness*2
top_wedge=encasing_thickness
wedge = np.zeros((n_samples, n_traces))
wedge[0:encasing_thickness,:]=1
wedge[encasing_thickness:,:]=3
wedge[encasing_thickness:encasing_thickness+min_thickness,:]=2
for i in range(n_traces):
wedge[encasing_thickness+min_thickness:encasing_thickness+min_thickness+int(round(deltaz*i)),i]=2
print "wedge minimum thickness: %.2f m" % (min_thickness*dz)
print "wedge maximum thickness: %.2f m" % (max_thickness*dz)
print "wedge vertical sampling: %.2f m" % (dz)
print "wedge samples, traces: %dx%d" % (wedge.shape)
return wedge
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def assign_ai(model, aiprop):
'''
Assigns acoustic impedance to a rock model created with make_wedge.
INPUT
model: 2D numpy array containing values from 1 to 3
aiprop: np.array([[vp1,rho1],[vp2,rho2],[vp3,rho3]])
OUTPUT
model_ai: 2D numpy array containing acoustic impedances
'''
model_ai=np.zeros(model.shape)
code = 1
for x in aiprop:
model_ai[model==code] = x[0]*x[1]
code += 1
return model_ai
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def assign_vel(model, aiprop):
'''
Assigns velocity to a rock model created with make_wedge,
to be used for depth-time conversion.
INPUT
model: 2D numpy array containing values from 1 to 3
aiprop: np.array([[vp1,rho1],[vp2,rho2],[vp3,rho3]])
OUTPUT
model_vel: 2D numpy array containing velocities
'''
model_vel=np.zeros(model.shape)
code=1
for x in aiprop:
model_vel[model==code] = x[0]
code += 1
return model_vel
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def assign_el(model, elprop):
'''
Assigns elastic properties (Vp, Vs, rho) to a rock model created with make_wedge.
INPUT
model: 2D numpy array containing values from 1 to 3
elprop: np.array([[vp1,rho1,vs1],[vp2,rho2,vs2],[vp3,rho3,vs3]])
OUTPUT
model_vp: 2D numpy array containing Vp
model_vs: 2D numpy array containing Vs
model_rho: 2D numpy array containing densities
'''
model_vp=np.zeros(model.shape)
model_vs=np.zeros(model.shape)
model_rho=np.zeros(model.shape)
code = 1
for i in elprop:
model_vp[model==code] = i[0]
model_vs[model==code] = i[2]
model_rho[model==code] = i[1]
code += 1
return model_vp,model_vs,model_rho
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def make_rc(model_ai):
'''
Computes reflectivities of an acoustic model created with make_wedge + assign_ai.
INPUT
model: 2D numpy array containing acoustic impedances
OUTPUT
rc: 2D numpy array containing reflectivities
'''
upper = model_ai[:-1][:][:]
lower = model_ai[1:][:][:]
rc=(lower - upper) / (lower + upper)
if model_ai.ndim==1:
rc=np.concatenate((rc,[0]))
else:
n_traces=model_ai.shape[1]
rc=np.concatenate((rc,np.zeros((1,n_traces)))) # add 1 row of zeros at the end
return rc
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def make_rc_elastic(model_vp,model_vs,model_rho,ang):
'''
Computes angle-dependent reflectivities of an elastic model created with make_wedge + assign_el.
Uses Aki-Richards approximation.
INPUT
model_vp: 2D numpy array containing Vp values
model_vs: 2D numpy array containing Vs values
model_rho: 2D numpy array containing density values
ang: list with near, mid, far angle, e.g. ang=[5,20,40]
OUTPUT
rc_near: 2D numpy array containing near-stack reflectivities
rc_mid: 2D numpy array containing mid-stack reflectivities
rc_far: 2D numpy array containing far-stack reflectivities
'''
from agilegeo.avo import akirichards
[n_samples, n_traces] = model_vp.shape
rc_near=np.zeros((n_samples,n_traces))
rc_mid=np.zeros((n_samples,n_traces))
rc_far=np.zeros((n_samples,n_traces))
uvp = model_vp[:-1][:][:]
lvp = model_vp[1:][:][:]
uvs = model_vs[:-1][:][:]
lvs = model_vs[1:][:][:]
urho = model_rho[:-1][:][:]
lrho = model_rho[1:][:][:]
rc_near=akirichards(uvp,uvs,urho,lvp,lvs,lrho,ang[0])
rc_mid=akirichards(uvp,uvs,urho,lvp,lvs,lrho,ang[1])
rc_far=akirichards(uvp,uvs,urho,lvp,lvs,lrho,ang[2])
rc_near=np.concatenate((rc_near,np.zeros((1,n_traces)))) # add 1 row of zeros at the end
rc_mid=np.concatenate((rc_mid,np.zeros((1,n_traces))))
rc_far=np.concatenate((rc_far,np.zeros((1,n_traces))))
return rc_near, rc_mid, rc_far
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def make_synth(rc,wavelet):
'''
Convolves reflectivities with wavelet.
INPUT
rc: 2D numpy array containing reflectivities
wavelet
OUTPUT
synth: 2D numpy array containing seismic data
Works with 1D arrays now (2015-05-07).
'''
nt=np.size(wavelet)
if rc.ndim>1:
[n_samples, n_traces] = rc.shape
synth = np.zeros((n_samples+nt-1, n_traces))
for i in range(n_traces):
synth[:,i] = np.convolve(rc[:,i], wavelet)
synth = synth[np.ceil(len(wavelet))/2:-np.ceil(len(wavelet))/2, :]
synth=np.concatenate((synth,np.zeros((1,n_traces))))
else:
n_samples = rc.size
synth = np.zeros(n_samples+nt-1)
synth = np.convolve(rc, wavelet)
synth = synth[np.ceil(len(wavelet))/2:-np.ceil(len(wavelet))/2]
synth=np.concatenate((synth,[0]))
return synth
# def make_synth(rc,wavelet):
# nt=np.size(wavelet)
# [n_samples, n_traces] = rc.shape
# synth = np.zeros((n_samples+nt-1, n_traces))
# for i in range(n_traces):
# synth[:,i] = np.convolve(rc[:,i], wavelet)
# synth = synth[np.ceil(len(wavelet))/2:-np.ceil(len(wavelet))/2, :]
# synth=np.concatenate((synth,np.zeros((1,n_traces))))
# return synth
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def make_synth_v2(rc,wavelet):
'''
Convolves reflectivities with wavelet.
Alternative version using numpy apply_along_axis,
slower than np.convolve with for loop.
INPUT
rc: 2D numpy array containing reflectivities
wavelet
OUTPUT
synth: 2D numpy array containing seismic data
'''
nt=np.size(wavelet)
[n_samples, n_traces] = rc.shape
synth=np.zeros((n_samples+nt-1, n_traces))
synth=np.apply_along_axis(lambda m: np.convolve(m,wavelet),axis=0,arr=rc)
return synth
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def make_synth_v3(rc,wavelet):
'''
Convolves reflectivities with wavelet.
Alternative version using scipy.ndimage.filters.convolve1d,
slower than np.convolve with for loop.
INPUT
rc: 2D numpy array containing reflectivities
wavelet
OUTPUT
synth: 2D numpy array containing seismic data
'''
from scipy.ndimage.filters import convolve1d
nt=np.size(wavelet)
[n_samples, n_traces] = rc.shape
synth=np.zeros((n_samples+nt-1, n_traces))
synth=convolve1d(rc,wavelet,axis=0)
return synth
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def forward_model(model,aiprop,wavelet,dz,dt):
"""
Meta function to do everything from scratch (zero-offset model).
"""
earth = assign_ai(model, aiprop)
vels = assign_vel(model, aiprop)
earth_time=agilegeo.avo.depth_to_time(earth,vels,dz,dt,twt=True)
rc = make_rc(earth_time)
return make_synth(rc,wavelet)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def forward_model_elastic(model,elprop,wavelet,ang,dz,dt):
"""
Meta function to do everything from scratch (angle-dependent models).
"""
model_vp,model_vs,model_rho = assign_el(model,elprop)
model_vp_time=agilegeo.avo.depth_to_time(model_vp,model_vp,dz,dt,twt=True)
model_vs_time=agilegeo.avo.depth_to_time(model_vs,model_vp,dz,dt,twt=True)
model_rho_time=agilegeo.avo.depth_to_time(model_rho,model_vp,dz,dt,twt=True)
rc_near, rc_mid, rc_far=make_rc_elastic(model_vp_time,model_vs_time,model_rho_time,ang)
near = make_synth(rc_near,wavelet)
mid = make_synth(rc_mid,wavelet)
far = make_synth(rc_far,wavelet)
return near,mid,far
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def forward_model_elastic_decay(model,elprop,wav_near,wav_mid,wav_far,dz,dt):
"""
Meta function to do everything from scratch (angle-dependent models).
Uses angle-dependent wavelet to simulate frequency decay with offset.
"""
model_vp,model_vs,model_rho = assign_el(model,elprop)
model_vp_time=agilegeo.avo.depth_to_time(model_vp,model_vp,dz,dt,twt=True)
model_vs_time=agilegeo.avo.depth_to_time(model_vs,model_vp,dz,dt,twt=True)
model_rho_time=agilegeo.avo.depth_to_time(model_rho,model_vp,dz,dt,twt=True)
rc_near, rc_mid, rc_far=make_rc_elastic(model_vp_time,model_vs_time,model_rho_time,ang)
near = make_synth(rc_near,wav_near)
mid = make_synth(rc_mid,wav_mid)
far = make_synth(rc_far,wav_far)
return near,mid,far
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def extract_amp(data,elprop,encasing_thickness,min_thickness,max_thickness,dt,freq):
'''
Extracts top and bottom real/apparent amplitudes from wedge.
INPUT
data: synthetic wedge in twt
elprop: np.array([[vp1,rho1,vs1],[vp2,rho2,vs2],[vp3,rho3,vs3]])
encasing_thickness
min_thickness
max_thickness
dt: twt vertical sample rate
OUTPUT
toptwt0,bottwt0: top, bottom horizon (REAL)
topamp0,botamp0: top, bottom amplitude (REAL)
toptwt1,bottwt1: top, bottom horizon (APPARENT)
topamp1,botamp1: top, bottom amplitude (APPARENT)
'''
[ns,nt]=data.shape
twt=np.arange(0,ns*dt,dt)
Fd=freq*1.3
b=1/Fd
cerca=int((b/dt)/2)
# if Ip_above<Ip_below then we have an INCREASE in Ip = positive RC = peak
top_is_peak=elprop[0,0]*elprop[0,1]<elprop[1,0]*elprop[1,1]
bot_is_peak=elprop[1,0]*elprop[1,1]<elprop[2,0]*elprop[2,1]
layer_1_twt=float(encasing_thickness)/elprop[0,0]*2
incr=(max_thickness-min_thickness)/float(nt)
toptwt0=np.zeros(nt)+layer_1_twt
bottwt0=np.zeros(nt)+layer_1_twt+(min_thickness/elprop[1,0]*2)
for i in range(nt):
bottwt0[i]=bottwt0[i]+incr*i/elprop[1,0]*2
# amplitude extraction at top,bottom REAL
topamp0=np.zeros(nt)
botamp0=np.zeros(nt)
for i,val in enumerate(toptwt0):
dd=np.abs(twt-val).argmin()
window=data[dd,i]
if top_is_peak:
topamp0[i]=window.max()
else:
topamp0[i]=window.min()
for i,val in enumerate(bottwt0):
dd=np.abs(twt-val).argmin()
window=data[dd,i]
if bot_is_peak:
botamp0[i]=window.max()
else:
botamp0[i]=window.min()
# amplitude extraction at top,bottom APPARENT
toptwt1=np.copy(toptwt0)
bottwt1=np.copy(bottwt0)
topamp1=np.zeros(nt)
botamp1=np.zeros(nt)
for i,val in enumerate(toptwt0):
dd=np.abs(twt-val).argmin() # sample corresponding to horizon pick
window=data[dd-cerca:dd+cerca,i] # amplitudes within a window centered on horizon pick and spanning -/+ samples (`cerca`)
if np.any(window):
if top_is_peak:
toptwt1[i]=twt[np.abs(data[:,i]-window.max()).argmin()]
topamp1[i]=window.max()
else:
toptwt1[i]=twt[np.abs(data[:,i]-window.min()).argmin()]
topamp1[i]=window.min()
else:
toptwt1[i]=np.NaN
topamp1[i]=np.NaN
for i,val in enumerate(bottwt0):
dd=np.abs(twt-val).argmin()
window=data[dd-cerca:dd+cerca,i]
if np.any(window):
if bot_is_peak:
bottwt1[i]=twt[np.abs(data[:,i]-window.max()).argmin()]
botamp1[i]=window.max()
else:
bottwt1[i]=twt[np.abs(data[:,i]-window.min()).argmin()]
botamp1[i]=window.min()
else:
bottwt1[i]=np.NaN
botamp1[i]=np.NaN
return toptwt0,bottwt0,topamp0,botamp0,toptwt1,bottwt1,topamp1,botamp1
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def extract_peakfreqs(data,min_thickness,max_thickness,dt):
'''
Extracts peak frequencies from wedge.
INPUT
data: synthetic wedge in twt
min_thickness
max_thickness
dt: twt vertical sample rate
OUTPUT
aft: array with peak amplitude (A) at row 0, peak frequency (F) at row 1, thickness (T) at row 2
spectra: array with amplitude spectra for all traces
'''
import aaplot
from scipy.signal import argrelmax
[ns,nt]=data.shape
amp0,ff0=aaplot.ampspec(data[:,0],dt)
spectra=np.zeros((amp0.size,nt))
aft=np.zeros((3,nt)) # row 0: peak Amplitudes, row 1: peak Frequencies, row 2: Thickness
for i in range(nt):
amp,ff=aaplot.ampspec(data[:,i],dt)
spectra[:,i]=amp
peak_freq_list=ff[argrelmax(amp)]
peak_amp_list=amp[argrelmax(amp)]
if peak_freq_list.size==0:
aft[0,i]=np.NaN
aft[1,i]=np.NaN
else:
uu=peak_amp_list==np.max(peak_amp_list)
peak_amp=peak_amp_list[uu]
peak_freq=peak_freq_list[uu]
aft[0,i]=peak_amp
aft[1,i]=peak_freq
incr=(max_thickness-min_thickness)/float(nt)
aft[2,i]=i*incr+min_thickness
# print peak_freq_list, peak_amp_list
# print 'traccia %d, peak freq=%.2f, spessore=%.2f' % (i, peak_freq, ss[2,i])
return aft, spectra