forked from cszn/SCUNet
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_vsr.py
274 lines (225 loc) · 10.1 KB
/
test_vsr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import argparse
import cv2
import math
import os.path
import torch
from datetime import timedelta
from fractions import Fraction
from utils import utils_image as util
from utils.utils_video import VideoDecoder, VideoEncoder
if not torch.cuda.is_available():
print('CUDA is not available. Exiting...')
exit()
default_device = torch.device('cuda')
torch.backends.cudnn.benchmark = True
if torch.cuda.is_bf16_supported():
default_dtype = torch.bfloat16
else:
props = torch.cuda.get_device_properties(default_device)
# fp16 supported at compute 5.3 and above
if props.major > 5 or (props.major == 5 and props.minor >= 3):
default_dtype = torch.float16
else:
default_dtype = torch.float32
def main():
n_channels = 3
# ----------------------------------------
# Preparation
# ----------------------------------------
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default=None, help='path to the model')
parser.add_argument('--input', type=str, default='input', help='path of inputs')
parser.add_argument('--output', type=str, default='output', help='path of results')
parser.add_argument('--depth', type=int, default=16, help='bit depth of outputs')
parser.add_argument('--suffix', type=str, default=None, help='output filename suffix')
parser.add_argument('--video', type=str, default=None, help='ffmpeg video codec. if chosen, output video instead of images', choices=['dnxhd', 'libx264', 'libx265', '...'])
parser.add_argument('--vprofile', type=str, default='high444', help='video profile')
parser.add_argument('--crf', type=int, default=11, help='video crf')
parser.add_argument('--preset', type=str, default='slow', help='video preset')
parser.add_argument('--pix_fmt', type=str, default='yuv444p10le', help='video pixel format')
parser.add_argument('--fps', type=str, default='24000/1001', help='video framerate')
parser.add_argument('--res', type=str, default='1440:1080', help='video resolution to scale output to')
parser.add_argument('--presize', action='store_true', help='resize video before processing')
args = parser.parse_args()
if not args.model_path:
parser.print_help()
raise ValueError('Please specify model_path')
model_path = args.model_path
model_name = os.path.splitext(os.path.basename(model_path))[0]
# ----------------------------------------
# L_path, E_path
# ----------------------------------------
L_path = args.input # L_path, for Low-quality images
E_path = args.output # E_path, for Estimated images
if not L_path or not os.path.exists(L_path):
print('Error: input path does not exist.')
return
video_input = False
if L_path.split('.')[-1].lower() in ['webm','mkv', 'flv', 'vob', 'ogv', 'ogg', 'drc', 'gif', 'gifv', 'mng', 'avi', 'mts', 'm2ts', 'ts', 'mov', 'qt', 'wmv', 'yuv', 'rm', 'rmvb', 'viv', 'asf', 'amv', 'mp4', 'm4p', 'm4v', 'mpg', 'mp2', 'mpeg', 'mpe', 'mpv', 'm2v', 'm4v', 'svi', '3gp', '3g2', 'mxf', 'roq', 'nsv', 'f4v', 'f4p', 'f4a', 'f4b']:
video_input = True
if not args.video:
print('Error: input video requires --video to be set')
return
elif os.path.isdir(L_path):
L_paths = util.get_image_paths(L_path)
else:
L_paths = [L_path]
if args.video and (not E_path or os.path.isdir(E_path)):
print('Error: output path must be a single video file')
return
if not os.path.exists(E_path) and os.path.splitext(E_path)[1] == '':
util.mkdir(E_path)
if not args.video and not os.path.isdir(E_path) and os.path.isdir(L_path):
E_path = os.path.dirname(E_path)
# ----------------------------------------
# load model
# ----------------------------------------
torch.cuda.empty_cache()
from models.network_tscunet import TSCUNet as net
model = net(state=torch.load(model_path))
model.eval()
scale = model.scale
clip_size = model.clip_size
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(default_device)
input_shape = (1, clip_size, 3, 540, 720)
dummy_input = torch.randn(input_shape).to(default_device, dtype=default_dtype)
torch.cuda.empty_cache()
# warmup
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=default_dtype):
_ = model(dummy_input)
print('Model path: {:s}'.format(model_path))
print('model_name:{}'.format(model_name))
print(L_path)
num_parameters = sum(map(lambda x: x.numel(), model.parameters()))
print('{:>16s} : {:<.4f} [M]'.format('#Params', num_parameters/10**6))
if args.suffix:
suffix = f"{scale}x_{args.suffix}"
else:
suffix = f"{model_name}" if f"{scale}x_" in model_name else f"{scale}x_{model_name}"
if video_input:
video_decoder = VideoDecoder(L_path, options={'r': '24000/1001' }) # 'filter:v': 'yadif',
img_count = len(video_decoder)
video_decoder.start()
else:
img_count = len(L_paths)
if args.video:
if '/' in args.fps:
fps = Fraction(*map(int, args.fps.split('/')))
elif '.' in args.fps:
fps = float(args.fps)
else:
fps = int(args.fps)
codec_options = {
'crf': str(args.crf),
'preset': args.preset,
'profile': args.vprofile,
'pix_fmt': args.pix_fmt,
}
video_encoder = VideoEncoder(
E_path,
int(args.res.split(':')[0]),
int(args.res.split(':')[1]),
fps=fps,
codec=args.video,
pix_fmt=args.pix_fmt,
options=codec_options,
input_depth=args.depth,
)
video_encoder.start()
input_window = []
image_names = []
total_time = 0
end_of_video = False
try:
idx = 0
while True:
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
# ------------------------------------
# (1) img_L
# ------------------------------------
if video_input:
img_L = video_decoder.get_frame()
elif len(L_paths) == 0:
img_L = None
else:
img_L = L_paths.pop(0)
img_name, ext = os.path.splitext(os.path.basename(img_L))
img_L = util.imread_uint(img_L, n_channels=n_channels)
image_names += [img_name]
if img_L is None and not end_of_video:
img_count = idx + clip_size // 2
end_of_video = True
# reflect pad the end of the window
input_window += input_window[clip_size//2-1:-1][::-1]
elif not end_of_video:
if args.presize:
img_L = cv2.resize(img_L, (int(args.res.split(':')[0])//scale, int(args.res.split(':')[1])//scale), interpolation=cv2.INTER_CUBIC)
img_L_t = util.uint2tensor4(img_L)
img_L_t = img_L_t.to(default_device, dtype=default_dtype)
input_window += [img_L_t]
if len(input_window) < clip_size and end_of_video:
# no more frames to process
break
elif len(input_window) < clip_size // 2 + 1:
# wait for more frames
continue
elif len(input_window) == clip_size // 2 + 1:
# reflect pad the beginning of the window
input_window = input_window[1:][::-1] + input_window
# ------------------------------------
# (2) img_E
# ------------------------------------
#rng_state = torch.get_rng_state()
#torch.manual_seed(13)
window = torch.stack(input_window[:clip_size], dim=1)
with torch.cuda.amp.autocast(dtype=default_dtype):
img_E = model(window)
#img_E, _ = util.tiled_forward(model, window, overlap=256, scale=scale)
del window
# replace the current frame in the window with the reconstructed frame
#input_window[clip_size//2] = torch.nn.functional.interpolate(img_E, scale_factor=1/scale, mode='bicubic')
# remove the oldest frame from the window
input_window.pop(0)
img_E = util.tensor2uint(img_E, args.depth)
#torch.set_rng_state(rng_state)
# ------------------------------------
# save results
# ------------------------------------
if args.video:
img_E = cv2.resize(img_E, (int(args.res.split(':')[0]), int(args.res.split(':')[1])), interpolation=cv2.INTER_CUBIC)
if args.video:
video_encoder.add_frame(img_E)
elif os.path.isdir(E_path):
util.imsave(img_E, os.path.join(E_path, f'{image_names.pop(0)}_{suffix}.png'))
else:
util.imsave(img_E, E_path)
end.record()
torch.cuda.synchronize()
idx += 1
time_taken = start.elapsed_time(end)
total_time += time_taken
time_remaining = ((total_time / (idx)) * (img_count - (idx+1)))/1000
print(f'{idx}/{img_count} fps: {1000/time_taken:.2f} frame time: {time_taken:2f}ms time remaining: {math.trunc(time_remaining/3600)}h{math.trunc((time_remaining/60)%60)}m{math.trunc(time_remaining%60)}s ', end='\r')
except KeyboardInterrupt:
print("\nCaught KeyboardInterrupt, ending gracefully")
except Exception as e:
print("\n" + str(e))
else:
print("\n")
if args.video:
video_encoder.stop()
video_encoder.join()
if idx > 0:
print(f"Saved video to {E_path}")
if video_input:
video_decoder.stop()
video_decoder.join()
if idx > 0:
print(f'Processed {idx} images in {timedelta(milliseconds=total_time)}, average {total_time / idx:.2f}ms per image ')
if __name__ == '__main__':
main()