CBSE Computer Science Practicals

Name : Aahnik Daw

Class : XII-E
School : Kalyani Public School, Barasat, West Bengal
Roll :

Find this online : https://github.com/aahnik/cbse-xii-cs-proj/

Scan this QR Code to visit the page online

af://n673
https://github.com/aahnik/cbse-xii-cs-proj/

CBSE Computer Science Practicals

Python
i. A program to calculate the n-th term of Fibonacci series using function.
ii. Program to search any word in given string/sentence using function.
iii. Read a text file line by line and display each word separated by a # .
iv. Read a text file and display the number of vowels/consonants/uppercase/lowercase characters
and digits in the file.
v. Read a text file and display the largest word and maximum number of characters presentin a line
from text file.
vi. Write a program using Dictionary and Text file to store roman numbers and find their equivalent.
vii. Write a menu driven program to perform read and write operations using a text file called
“student.txt” counting student roll_no, name and address.
viii. Create a binary file with name and roll number. Search for a given roll number and display the
name, if not found display appropriate message.
ix. Create a binary file with roll number, name and marks. Input a roll number and update the
marks.
x. Remove all the lines that contain the character “a'in a file and write it to another file.
xi. Write a random number generator that generates random numbers between 1 and 6 (simulates
a dice).
xii. Take a sample of ten phishing e-mails (or any text file) and find most commonly occurring
word(s).
xiii. Program to create CSV file and store empno,name,salary and search any empno and display
name,salary and if not found appropriate message.
xiv. Program to implement Stack in Python using List.
xv. Program to implement Queue in Python using List.
xvi. Program to create 21 Stick Game so that computer always wins
xvii. Program to connect with database and store record of employee and display records.
xviii. Program to connect with database and search employee number in table employee and display
record, if empno not found display appropriate message.
xix. Program to connect with database and update the employee record of entered empno.
xx. Program to connect with database and delete the record of entered employee number.
Helper scripts

SQL
i. To display the all information of Sales department.
ii. To display all information about the employees whose name starts with 'K'.
iii. To list the name of female employees who are in Finance department.
iv. To display name and sex of all the employees whose age is in the range of 40 to 50 in ascending
order of their name.
v. To count the number of female employees with age greater than 20 and who are in Accounts
department.
vi. To display the name of all Games with their GCodes.
vii. To display details of those games which are having PrizeMoney more than 7000.
viii. To display the content of the GAMES table in ascending order of ScheduleDate.
ix. To display sum of PrizeMoney for each of the Numberof participation groupings (as shown in
column number 2 or 4).
x. To display the sum of prize money of all games.
xi. Display the sum of all Loan Amount whose Interest rate is greater than 10.
xii. Display the Maximum Interest from Loans table.
xiii. Display the count of all loan holders whose name ends with ‘SHARMA'.
xiv. Display the count of all loan holders whose Interest is NULL.
xv. Display the Interest-wise details of Loan Account Holders.
xvi. Display the Interest-wise details of Loan Account Holders with at least 10 installments remaining
xvii. Display the Interest-wise count of all loan holders whose Installment due is more than 5 in each
group.
xviii. Add one more column name ‘Address’ to the LOANS table.
xix. Reduce Interest rate by 1 of all loan holders whose Interest is not NULL.
xx. Delete the record of customer whose account number is 105.

Python

i. A program to calculate the n-th term of Fibonacci series
using function.

Code

1 '"'"'" A program to calculate the n-th term of Fibonacci series using function.

PR

S

4

5 def fibo(n: int, memo: dict = {}) -> int:

6 '''" The name 'Fibonacci' is due to a 13th-century Italian mathematician

7 Leonardo of Pisa, who later came to be known as Fibonacci.

8 However, what we popularly call 'Fibonacci numbers' find their earliest
mention in the 2nd century BCE work of Acharya Pingala.

9

10 By definition,the 0-th term of the series is zero, and the 1-st term is
1.

11 Any other term is the sum of previous two terms.

12

13 This function uses the concept of memoization to decrease time
complexity

14 and increase speed.

il

16 Returns the n-th term of fibbonaci series. Returns -1 for invalid input.

17

18 Args:

19 n (int): the term

20

21 Returns:

22 int: the nth fibonacci number

23 et

24 if n in memo:

25 return memo[n]

26

27 if n < 0:

28 print(f'Invalid Input \n{fibo.__doc__}")

29 raise ValueError('You cannot calculate fibonacci number for n < @')

30

31 if n <= 2:

32 return 1

B9

34 memo[n] = fibo(n-1, memo) + fibo(n-2, memo)

35

36 return memo[n]

37

38

39 if __name__ == "__main__":

40 # Testing whether the function works correctly

41

42 assert fibo(1) == 1

43 assert fibo(2) ==

44 assert fibo(10) == 55

45 assert fibo(20) == 6765

af://n696
af://n698

46 print(f'The 50th fibonacci number is {fibo(50)}"')

47 print(f'The 100th fibonacci number is {fibo(100)}')
48
Output

1

2 > python -i g01_fibo.py

3 The 50th fibonacci number is 12586269025

4 The 100th fibonacci number is 354224848179261915075

5 >>> fibo(1)

6 1

7 >>> fibo(20)

8 6765

9 >>> fibo(34)
10 5702887
11 >>> fibo(69)
12 117669030460994
13 >>> fibo(475)
14 8310824599087029352939557847011209937043690282006516138599728300807399805410

65544674812034151699525
15 >>>
16

ii. Program to search any word in given string/sentence
using function.

Code
1 ''' Program to search any word in given string/sentence using function
PREE
3
4
5 def search(string: str, word: str) -> list:
6 ''" Searches given word in a given string and returns search result.
7
8 Args:
9 string (str): the given string/sentence in which to search
10 word (str): the word to search
11
12 Returns:
i3 list: list containing indexes of occurence of the word (empty if not
found)
14 et
15
16 index = -1
17 result = []
18
19 while True:
20 index = string.find(word, index+1)
21 if index == -
22 break
28 result.append(index)
24
25 return result
26
27
28 if __name__ == "__main__ ":
29 # Testing whether the function works correctly
30 assert(search('I am a donkey', 'donkey') == [7])
31 assert(search('Foo bar foo bar spam egg', 'bar') == [4, 12])
32 assert(search('Bharat Mahan', 'pakistan') == [])
&3
Output
1
2 > python -i g@2_wordSearch.py
3 >>> search('I love Computer Science', 'love')
4 [2]
5 >>> search('FAANG rules the world', 'India')
6 []
7 >>> search('Aeio u aeio aieo','a')
8 | [7, 12]
9 >>>

[EEY
(o}

af://n707

iii. Read a text file line by line and display each word
separated by a #.

Code

1 ''' Read a text file line by line and display each word separated by a # .
K

&

4

5 path = input('Enter path of the file to read \n >>> ')
6
7 try:

8 with open(path, 'r') as file:

9 while True:

10 line = file.readline()

11 if line == '':

12 break

i3 for word in line.split():

14 print(word, end='#")

15

16 except FileNotFoundError:

17 print("Sorry ! File does not exist")

18

19 finally:

20 print("Done")

21

Output

1

2 > python g03_textRead.py

3 Enter path of the file to read

4 >>> data/text.txt

5 RSA#algorithm#From#Simple#English#Wikipedia,

6 kfksf#kjkfjsjflksjk#fkjsdlif#jk#k]jjfkljslkfjjklj#ksdfkjskl#l#lkjijfiijkkdflij

grofkjporglrj#kljrjiodngl#pkjgjlj#kjglkjf#jlgkmflj#iodjglkjg#jgldjgljglmtioj5s
o9m#okptg#; jgojg#oglg;od;

af://n716

iv. Read a text file and display the number of
vowels/consonants/uppercase/lowercase characters and
digits in the file.

Code
1 '''" Read a text file and display the number of
vowels/consonants/uppercase/lowercase
2 characters and digits in the file.
3 |t
4
5
6 def analyse(path: str) -> dict:
7 '''" Analyses a text file and displays the number of
vowels/consonants/uppercase/lowercase characters and digits in the file.
8
9 Args:
10 path (str): path of the file to analyse
11
12 Returns:
13 dict: dictionary containing the analysis
14 et
15
16 with open(path, 'r') as file:
17 content = file.read()
18
19 analysis = {'vowel': 0,
20 'consonant': 0O,
21 'uppercase': 0,
22 'lowercase': 0O,
23 'digit': ©
24 3
25
26 def count(categ: str) -> None:
27 et
28 Helper function to count
29 trt
30 analysis[categ] += 1
31
32 for chr in content:
33 if chr.isupper():
34 count('uppercase')
35 if chr.islower():
36 count('lowercase')
37 if chr.isdigit():
38 count('digit')
39
40 if chr.isalpha():
41 if chr.lower() in 'aeiou':
42 count('vowel')
43 else:
44 count('consonant')
45
46 return analysis

47

af://n724

48

49 if __pame__ == "__main__":
50 # Test the function
51 result = analyse(input('Enter file path\n>>> "))
52 print(result)
59
Output

1 > python g04_txtalyser.py

2 Enter file path

3 >>> data/text.txt

4 {'vowel': 4388, 'consonant': 8344, 'uppercase': 535, 'lowercase': 12182,
'digit': 341}

v. Read a text file and display the largest word and
maximum number of characters present in a line from text
file.

Code
1 ''' Read a text file and display the largest word and maximum number of
characters
2 present in a line from text file.
3 i
4
5
6 def analyse(path: str) -> None:
7 '''" Analyses a text file and display the largest word and maximum number
of characters present in a line from text file.
8
9 Args:
10 path (str): path of the file to analyse
11 et
12
13 with open(path, 'r') as file:
14 content = file.read()
15
16 for line_no, line in enumerate(content.splitlines(), start=1):
17
18 if len(line) !'= 0:
19 print(
20 f'''Line:{line_no} Character Count : {len(line)}''",
end="\t")
21 words = line.split()
22 if words:
28 print(f'Largest Word: {max(words)}')
24 else:
25 print('This line has no words')
26
27 else:
28 print(f'Line:{line_no} Empty Line')
29
30
31 if __name__ == "__main__":
32 # Run the function
33 analyse(input('Enter file path\n>>> '))
34
Output
1
2 Enter file path
3 >>> data/text.txt
4 Line:1 Empty Line
5 Line:2 Character Count : 13 Largest Word: algorithm
6 Line:3 Character Count : 52 Largest Word: the
7 Line:4 Character Count : 32 Largest Word: to
8 Line:5 Empty Line
9 Line:6 Character Count : 197 Largest Word: write

af://n732

10
11
12
13
14

Line:7 Character Count : 566
Line:8 Empty Line
Line:9 Character Count : 263
Line:10 Empty Line

Largest Word: when

Largest Word: with

vi. Write a program using Dictionary and Text file to store
roman numbers and find their equivalent.

Code

1 ''' Write a program using Dictionary and Text file to store roman numbers
and find their equivalent.

o | rr

&

4

5 # base roman numbers and their integer equivalents

6 ROMAN = {

7 0302 4,

8 'V': 5,

9 'X': 10,

10 "L': 50,

11 'C': 100,

12 'D': 500,

13 'M': 1000,

14 }

15

16

17 def parse_roman(roman_num: str) -> int:

18 """ Parses a string which is roman numeral and returns equivalent
integer.

19

20 Args:

21 roman_num (str): Roman numeral to parse

22

23 Raises:

24 ValueError: Invalid character in roman numeral

25 ValueError: Character occured more than 3 times consecutivel

26 ValueError: Invalid roman numeral, incorrect subtractive notation

27

28 Returns:

29 int: Integer equivalent

30 e

31

32 # stripping any space

88 roman_num = roman_num.strip()

34

85! # convert string to uppercase

36 roman_num = roman_num.upper ()

37

38 # list of parsed characters

39 prev = []

40

41 # total is the value to be returned

42 total = 0

43

44 # checker for valid roman string

45 largest = 0

46

47 # iterating the roman numeral from right to left

48 for chr in roman_num[::-17:

49

af://n740

50 # get the integer value of the character, None if not in ROMAN

51 curr_num = ROMAN.get(chr)
52
58 # if current character does not exist in ROMAN dictionary
54 if not curr_num:
55 raise ValueError(f'Invalid character "{chr}" in roman numeral')
56
57 # list of last 3 characters parsed
58 last3 = prev[-3:]
59
60 # if last 3 characters exist
61 if len(last3) == 3:
62 # if all of the last 3 characters are same as current one
63 if all(chr == last for last in last3):
64 raise ValueError(
65 f'Invalid roman numeral, "{chr}" occured more than 3
times consecutively')
66
67 # if atleast one character have been already parsed
68 if prev:
69 # numeric value of last character parsed
70 last_num = ROMAN.get(prev[-1])
71
72 # if last character is numerically smaller or equal to current
one
73 if last_num <= curr_num:
74 total += curr_num
75
76 # checking validity of roman string
77 if curr_num > largest:
78 largest = curr_num
79 elif curr_num < largest:
80 raise ValueError(
81 'Invalid roman numeral, incorrect subtractive
notation')
82 else:
83 total -= curr_num
84
85 # parsing the first character, ie the last character of the roman
string
86 else:
87 total += curr_num
88 largest = curr_num
89
90 prev.append(chr)
91 return total
92
93
94 if __name__ == "__main__ ":
95 # Checking whether our algorithm passes all test cases
96
97 with open('data/romans.txt') as file:
98 for line in file:
99 roman, decimal = line.split(',")
100 print(f'\nTesting if "{roman}" is same as {decimal.strip()}')
101 try:
102 assert parse_roman(roman) == int(decimal)

103 print('True')

104 except ValueError as err:

105 print(err)

106 except AssertionError:
107 print(f'False. The correct decimal is

{parse_roman(roman)}"')
108
Output

1

2 > cat data/romans.txt

3 xii,12

4 v,5

5 ¢,100

6 cii,102

7 iiv,3

8 xv,12

9

10 > py -i gO6_roman.py

11

12 Testing if "xii" is same as 12

13 True

14

15 Testing if "v" is same as 5

16 | True

17

18 Testing if "c" is same as 100

19 True
20
21 Testing if "cii" is same as 102
22 True
23
24 Testing if "iiv" is same as 3
25 Invalid roman numeral, incorrect subtractive notation
26
27 Testing if "xv" is same as 12
28 False. The correct decimal is 15
29 >>>
30 >>> parse_roman('xvii')
31 | 17
32 >>> parse_roman('ii'")
33 | 2
34 >>> parse_roman('iiii')
35 Traceback (most recent call last):
36 File "<stdin>", line 1, in <module>
37 File "/home/aahnik/Projects/cbse-xii-cs-

proj/practicals/python/q@6_roman.py", line 64, in parse_roman
38 raise ValueError(
39 ValueError: Invalid roman numeral, "I" occured more than 3 times
consecutively

40 >>> parse_roman('c')
41 @ 100
42 >>> parse_roman('cxvii')
43 | 117
44 | >>>

45

vii. Write a menu driven program to perform read and write
operations using a text file called “student.txt” counting
student roll no, name and address.

Code
1 '"'"'" Write a menu driven program to perform read and write operations using
a text file
2 called “student.txt” counting student roll no, name and address.
3t
4
5
6 import os
7 from utils import drive_menu
8
9 filename = "'
10
11
12 def init(path: str) -> None:
13 """ Creates an file “student.txt in desired directory, if not exists.
14
15 Args:
16 path (str): Directory path
17 et
18
19 try:
20 os.makedirs(path)
21 print("directory created")
22 except FileExistsError:
23 print("directory exists")
24
25 global filename
26 filename = os.path.join(path, 'student.txt')
27
28 if not os.path.isfile(filename):
29 # create file if does not exist
30 with open(filename, 'w+') as file:
31 file.write('Roll, Name,Address')
32 # writing the headers in first line (line no = 0)
88 print("file “student.txt® created")
34 return
85
36 print("file “student.txt® exists in desired directory")
37
38
39 def search_student(roll: int) -> list:
40 ''' Searches the roll no. in the text file.
41
42 Args:
43 roll (int): The roll number of student
44
45 Returns:
46 list: The record list which looks like [roll, name,address]
47 None if student's record is absent

N
0]

af://n748

49

50 with open(filename, 'r') as file:

51 content = file.read()

52

58 lines = content.splitlines()

54

55 def record(line): return line.split(',")

56

57 for line in lines:

58 if record(line)[0] == str(roll):

59 return record(line)

60

61 return None

62

63

64 def record_student() -> None:

65 ''' Records a new student in the text file.

66 - Roll numbers must be unique.

67 - If roll number already exists, returns False
68 e

69 try:

70 roll = int(input("Enter Student's roll number\n>>> "))
71 except ValueError:

72 print("Roll number must be an Integer")

73 return

74 name = input("Enter name\n>>> ")

75 address = input("Enter address\n>>> ").replace('\n', ';")
76 # new line in address is not allowed

77

78 if roll <= 0:

79 print('Invalid roll no')

80 return

81 if search_student(roll):

82 print('Student already exists')

83 return

84

85 with open(filename, 'a') as file:

86 file.write(f'\n{roll}, {name}, {address}')
87 # multi line address is converted to single line
88 print('Successfully Recorded')

89

90

91 def read_data() -> None:

92 ''' Displays the details of the student searhced
93 et

94 roll = input("Enter roll no. to search\n>>> ")
95 record = search_student(roll)

96 if not record:

97 print("Record not found")

98 else:

99 print(f'"’

100 Name : {record[1]}

101 | 00 s eemee------

102 Roll no. : {record[0]}

103

104 Address: {record[2]}

105 rrny

106

107
108 def display_all() -> None:

109 ''' Display all records.
110 et
111 with open(filename, 'r') as file:
112 print(file.read())
113
114
115 def main():
116 '''" Drive the application.
117 et
118
119 path = input('Enter directory path to store/retrieve data\n>>> ')
120 init(path)
121
122 menus = {}
123 menus['1'] = {'desc': 'Add new student',
124 'func': record_student}
125 menus['2'] = {'desc': 'Display details of all students',
126 'func': display_all}
127 menus['3'] = {'desc': 'Search student by roll no',
128 'func': read_data}
129 drive_menu('Student Management Portal', menus)
130
131
132 if __pame__ == "__main__ ":
133 main()
134
Output
1
2 > python q07_student.py
3 Enter directory path to store/retrieve data
4 >>> data/students.txt
5 directory created
6 file “student.txt' created
7
8 Press [ENTER] to continue or CTRL+C to quit
9

(the screen gets cleared at this point and menu is displayed)

1 MENU for Student Management Portal

2

3 T 1
4 | Choice | Description |
5 | | :
6 | 1 | Add new student

7} I |
8 | | 2 | Display details of all students |
9 | I I
10 | | 3 | search student by roll no

1 1 I 1 |
12 Enter your choice or X to quit

[EEY
w

14

>>>

(the user chooses menu 1)

© 0 N o 0o b~ W N B

[
©

>>> 1

Enter Student's roll number
>>> 45

Enter name

>>> Horrible Haru

Enter address

>>> Mars

Successfully Recorded

Press [ENTER] to continue or CTRL+C to quit

(the screen gets cleared at this point and menu is re-displayed)

o U~ WN B

>>> 3
Enter roll no. to search
>>> 2

Record not found

Press [ENTER] to continue or CTRL+C to quit

(the screen gets cleared at this point and menu is re-displayed)

A w N BB

>>> 2

Roll, Name, Address
45,Horrible Haru,Mars
23,Asdff, jklls

(the screen gets cleared at this point and menu is re-displayed)

© 0 N o o~ WN R

B R R
N B

>>> 3
Enter roll no. to search
>>> 45

Roll no. : 45

Address: Mars

Press [ENTER] to continue or CTRL+C to quit

viii. Create a binary file with name and roll number. Search
for a given roll number and display the name, if not found
display appropriate message.

Code
1 ''' Create a binary file with name and roll number. Search for a given roll
2 number and display the name, if not found display appropriate message.
3 ot
4
5
6 import pickle
7 import os
8 from utils import drive_menu
9
10 students = {}
11 filename = "'
12
13
14 def init(path: str) -> None:
15 ''"'" Load the file. If file does not exist, creates it.
16
17 Args:
18 path (str): file path
19 et
20
21 global students
22 if not os.path.isdir(path):
23 os.makedirs(path)
24 global filename
25 filename = os.path.join(path, 'student.bin')
26 if not os.path.isfile(filename):
27 with open(filename, 'wb') as file:
28 pickle.dump(students, file)
29 else:
30 with open(filename, 'rb') as file:
31 students = pickle.load(file)
32
33
34 def record() -> None:
85 ''' Record a new student.
36 et
37 roll = input('Enter roll: ')
38 name = input('Enter name: ')
39 student = {roll: name}
40 try:
41 students.update(student)
42 with open(filename, 'wb') as file:
43 pickle.dump(students, file)
44 print('Successfully recorded student')
45 except Exception as e:
46 print(f'Failed to record student due to error \n {e}')
47
48
49 def search() -> None:

af://n766

50 ''" Search for an existing student.

51 et
52 roll = input('Enter roll to search student: ')
53 try:
54 print(f'Student found : {students[roll]}"')
55 except KeyError:
56 print('Student not found in records')
57
58
59 def main():
60 '"'' Driving the app.
61 et
62
63 path = input('Enter directory path to store/retrieve data\n >>> ')
64 init(path)
65
66 menus = {}
67
68 menus['1'] = {'desc': 'Record new student',
69 'func': record}
70 menus['2'] = {'desc': 'Search student by roll',
71 'func': search}
72
73 drive_menu('Student Management', menus)
74
75
76 if _name__ == "__main__":
77 main()
78
Output
1 > python g08_studentBin.py
2 Enter directory path to store/retrieve data
3 >>> data
4
5 Press [ENTER] to continue or CTRL+C to quit

(the screen gets cleared at this point and menu is displayed)

1

2 MENU for Student Management
3

4 ! ! 1
5 | Choice | Description |
6 | | |
7 1 | Record new student |
8| | | |
9 | | 2 | Search student by roll |
10 | 1 |
11 Enter your choice or X to quit

12

13 >>>

(the user chooses menu 1)

o g b~ W N B

>>> 1

Enter roll: 10

Enter name: Gangabati Das
Successfully recorded student

(the screen gets cleared at this point and menu is re-displayed)

g A WO N B

>>> 2
Enter roll to search student: 12
Student found : Jack Dorsey

Press [ENTER] to continue or CTRL+C to quit

iX. Create a binary file with roll number, name and marks.
Input a roll number and update the marks.

Code

1 ''' Create a binary file with roll number, name and marks. Input a roll
2 number and update the marks.

3 | i

4

5

6 import pickle

7 from utils import drive_menu

8 from tabulate import tabulate

9 import os

10

11 # in data folder of current directory

12 filename = os.path.join('data', 'marks.bin')

13

14 students = {} # dictionary containing students
15

16

17 def load_file() -> None:

18 with open(filename, 'rb') as file:

19 global students

20 students = pickle.load(file)

21

22

23 def write_to_file() -> None:

24 with open(filename, 'wb') as file:

25 pickle.dump(students, file)

26

27

28 def record_student() -> None:

29 global students
30 roll, name, marks = input(
31 '"Enter roll, name and marks seperated by comma\n> ').split(',')
32 students[roll] = [name, marks]

33 write to_file()
34 print('Sucessfully recorded')
35

36
37 def update_marks() -> None:
38 roll, marks = input(
39 '"Enter roll, and new marks seperated by comma\n ').split(',"')
40 if roll in students.keys():
41 students[roll][1] = marks
42 write_to_file()
43 print('Sucessfully updated')
44 else:
45 print('Student does not exist in records')
46
47
48 def display() -> None:
49 table = []
50 for key, value in students.items():

51 table.append([key, value[0], value[1]])

af://n780

52 print(tabulate(table, tablefmt='fancy_grid',
53 headers=['Roll', 'Name', 'Marks']))
54

55

56 def main():

57 '''" Driving the app.

58 et

59 if not os.path.isfile(filename):

60 write_to_file()

61 else:

62 load_file()

63

64 menus = {}

65

66 menus['1'] = {'desc': 'Record new student',
67 'func': record_student}

68 menus['2'] = {'desc': 'Update marks of existing student',
69 "func': update_marks}

70 menus['3'] = {'desc': 'Display all records',
71 'func': display}

72

73 drive_menu('Marks Manager', menus)

74

75

76 if __name__ == "__main_ ":

77 main()

78

Output

1 > python g@9_marks.py

3 Press [ENTER] to continue or CTRL+C to quit

(the screen gets cleared at this point and menu is displayed)

1
2 MENU for Marks Manager
3
4 I I 1
5 | Choice | Description
6 | i I
70 1 | Record new student
8 | ! i
9 | 2 | Update marks of existing student |
10 | ! I
11 | | 3 | Display all records
12 I 1 |
13 Enter your choice or X to quit
14
15 >>>

(the user chooses 1)

>>> 1

Enter roll, name and marks seperated by comma
> 13, Jay Bhatt, 80

Sucessfully recorded

o o b~ W N B

Press [ENTER] to continue or CTRL+C to quit

(the screen gets cleared at this point and menu is displayed)

>>> 2

Enter roll, and new marks seperated by comma
13,90

Sucessfully updated

A W N B

(the screen gets cleared at this point and menu is re-displayed, and now the user tries an invalid
update)

>>> 2

Enter roll, and new marks seperated by comma
100, 90

Student does not exist in records

A WON B

(the screen gets cleared at this point and menu is re-displayed)

1

2

3 >>> 3

4 I T T 1
5 | Roll | Name | Marks |
6 | l : i
70 1 | Hitesham | 90 |
8| | I I |
9 | 34 | Ramesha | 89 |
10 | ! I I
11 | | 13 | Jay Bhatt | 90 |
12 L 1 1 |
13

14 Press [ENTER] to continue or CTRL+C to quit

=
a1

X. Remove all the lines that contain the character “a'in a file
and write it to another file.

Code
1 '''" Remove all the lines that contain the character "a' in a file and write
it
2 to another file.
3t
4
5
6 def move(old: str, new: str):
7 '''" The function that does the job
8
9 Args:
10 old (str): file path of original file
11 new (str): file path of new file
12 et
iLg
14 with open(old, 'r') as old_file:
15 lines = old_file.readlines()
16 a_lines = [line for line in lines if 'a' in line]
17 not_a_lines = [line for line in lines if 'a' not in line]
18
19 with open(old, 'w') as old_file:
20 old_file.writelines(not_a_lines)
21
22 with open(new, 'w') as new_file:
28 new_file.writelines(a_lines)
24
25
26 def main():
27 old = input('Enter the old file path: ')
28 new = input('Enter the new file path: ')
29 move (old, new)
30 print('Done! ')
31
32
33 if __name__ == "__main__ ":
34 main()
S5
Output

Let's first see the original file.

1 > cat data/lines.txt

2 A good donkey was grazing

3 No body took notice

4 But Andrew was eating ice-cream
5 Hans was jumping with joy

6 November is the month of winter
7 Jacob was lost

Now let's run the program.

af://n798

1 > python gq10_moveA.py

2 Enter the old file path: data/lines.txt

3 Enter the new file path: data/new_lines.txt
4 Done!

Now let's see the old file again.

1 > cat data/lines.txt
2 No body took notice
3 November is the month of winter

The new file is as follows.

> cat data/new_lines.txt
A good donkey was grazing

Hans was jumping with joy

1
2
3 But Andrew was eating ice-cream
4
5 Jacob was lost

xi. Write a random number generator that generates
random numbers between 1 and 6 (simulates a dice).

Code

© 0 N o 0o b~ W N B

I
N B

13

""" Write a random number generator that generates random numbers

between 1 and 6 (simulates a dice).

import random

while True:

print('Throwing a dice ...

")

print(random.randint(1, 6))

choice = input('Press ENTER to throw again, or X to quit')

if choice == 'X':
break

> python q11_dice.py
Throwing a dice ...
3

Press ENTER to throw
Throwing a dice ...
2

Press ENTER to throw
Throwing a dice ...
4

Press ENTER to throw
Throwing a dice ...
3

Press ENTER to throw

again,

again,

again,

again,

or

or

or

or

X to quit

X to quit

X to quit

X to quitX

af://n813

xii. Take a sample of ten phishing e-mails (or any text file)
and find most commonly occurring word(s).

Code
1 ''' Take a sample of ten phishing e-mails (or any text file) and find most
2 commonly occurring word(s)
&
4 the file “data/phishing.txt’ contains the text extracted from 10 phishing
emails
5 the samples are taken from https://security.berkeley.edu/
6
7
8 from collections import Counter
9 from tabulate import tabulate

10 import os

11

12 # in data folder of current directory

13 filename = os.path.join('data', 'phishing.txt')

14

15 with open(filename, 'r') as file:
16 content = file.read()

17

18 # take all the words

19 words = Counter(content.split())

20

21 # count the most common words

22 most_common = words.most_common(20)

23

24 print('Top 20 Commonly used words\n')

25 print(tabulate(most_common, tablefmt='fancy grid'))
26

Output

Note : the file data/phishing.txt contains the text extracted from 10 phishing emails
the samples are taken from https://security.berkeley.edu/

1 > python g12_phishy.py
2 Top 20 Commonly used words
&

4 [T 1

5 | to | 32 |

6 | —1

7 | bank | 29 |

8 | i I

9 | the | 24 |

10 | —

11 | immediate | 24 |
12| —

13 | urgent | 20 |
14| —

15 | you | 14 |

16 | I I

17 | | for | 10 |

af://n822
https://security.berkeley.edu/

©

| from

40
41
42

xiii. Program to create CSV file and store empno,name,salary
and search any empno and display name,salary and if not
found appropriate message.

Code
1 '''" Program to create CSV file and store empno,name,salary and search any
empno and
2 display name,salary and if not found appropriate message.
3t
4
5 dimport os
6 import csv
7 from utils import drive_menu
8
9 filename = os.path.join('data', 'employee.csv')
10
11
12 def init():
13 ''' Create files if not present '''
14 if not os.path.isfile(filename):
15 with open(filename, 'w') as file:
16 file.write('empno, name, salary')
17
18
19 def store() -> None:
20 ''' Store the record of employee '''
21 record = input('Enter empno, name and salary seperated by comma\n>>> ')
22 with open(filename, 'a') as file:
23 file.write(f'\n{record}"')
24 print('Employee recorded')
25)
26
27 def retrieve() -> None:
28 '''" Retrieve the record of existing employee '''
29 empno = input('Enter empno to search\n>>> ')
30 with open(filename, 'r') as file:
31 employees = csv.DictReader(file)
32 for row in employees:
33 if row['empno'] == empno:
34 print(f"Name: {row['name']}\nSalary: {row['salary']}")
35 return
36 print('Employee not found in records')
37
38
39 def main():
40 init()
41 menus = {}
42 menus['1'] = {'desc': 'Store new Employee', 'func': store}
43 menus['2'] = {'desc': 'Search Employee', 'func': retrieve}
44 drive_menu('Employee Management', menus)
45
46
47 if __name__ == "__main__ ":
48 main()

af://n832

49

Output
1
2 MENU for Employee Management
&
4 ! T 1
5 | Choice | Description
6 | i i
70 1 | Store new Employee |
8| | I I
9 | | 2 | search Employee |
10 I 1 |
11 Enter your choice or X to quit
12
13 >>>
14

(the user chooses 2)

>>> 2

Enter empno to search
>>> 13

Employee not found in records

o U A WN B

Press [ENTER] to continue or CTRL+C to quit

(the screen is cleared, and menu re-displayed)

>>> 1

Enter empno, name and salary seperated by comma
>>> 12, Akshay Kumar, 10000

Employee recorded

o U~ WN B

Press [ENTER] to continue or CTRL+C to quit

(the screen is cleared, and menu re-displayed)

>>> 2

Enter empno to search
>>> 12

Name: Akshay Kumar
Salary: 10000

N o o~ 0N R

Press [ENTER] to continue or CTRL+C to quit

xiv. Program to implement Stack in Python using List.

Code
1 '"''" Program to implement Stack in Python using List
K
8
4 from tabulate import tabulate
5 from utils import drive_menu
6
7
8 class Stack():
9 def __init_ (self, 1imit=9999) -> None:
10 self.stk = []
11 if (type(limit) !'= int) or (limit <= 0):
12 print(f'Invalid Limit : must be int greater than zero')
13 return
14 self.limit = limit
S
16 def is_empty(self):
17 return self.stk == []
18
19 def peek(self):
20 if self.is_empty():
21 print('Nothing to peek: Stack is empty')
22 return
23 return self.stk[len(self.stk)-1]
24
25 def push(self, data=None):
26 if not data:
27 data = input('Enter data to push: ')
28 if len(self.stk) == self.limit:
29 print('Stack Overflow : Size of stack exceeded limit')
30 return
31 self.stk.append(data)
32
88 def pop(self):
34 if self.is_empty():
35 print('Stack Underflow : Cannot pop from empty stack')
36 return
37 return self.stk.pop()
38
39 def display(self):
40 if self.is_empty():
41 return
42 else:
43 print('top')
44 print(tabulate([[item] for item in self.stk[::-1]],
45 tablefmt="'fancy_grid'))
46
47
48 def main():
49 stack = Stack()
50 menus = {}
51 menus['1'] = {'desc': 'Push', 'func': stack.push}

52 menus['2'] = {'desc': 'Pop', 'func': stack.pop}

af://n847

58 menus['3'] = {'desc': 'Peek', 'func': stack.peek}

54 menus['4'] = {'desc': 'Display', 'func': stack.display}
55) drive_menu('Stack Operations', menus)
56

5Y4

58 if __name__ == "__main_ ":

59 main()

60

Output

1 MENU for Stack Operations
2

3 I I 1

4 | Choice | Description

5 | : |

6 | 1 | Push |

7 | |

8 | | 2 | Pop |

9| i i
10 | | 3 | Peek
11 | | i I
12 | | 4 | Display |
13 ! 1 |
14 Enter your choice or X to quit
15
16 >>>

(during the execution of the program the screen is cleared and the menu is displayed several times, for
an aesthetic experience. To keep stuff clean, the same menu is not being repeated here)

1 >>> 1

2 Enter data to push: hoch
S

4 >>> 1

5 Enter data to push: poch
6
7 >>> 1

8 Enter data to push: ghosh
9

10 | >>> 3

11 ghosh

12

13 | >>> 4

14 | top

15 |

16 | ghosh |

17—

18 | poch |

19—

20 | hoch |

21 e

22

23 | >>> 2

24 ghosh

N
ol

26
27
28
29
30
31
32
33

>>> 4

top
| poch |

| hoch |

xv. Program to implement Queue in Python using List.

Code
1 '"''" Program to implement Queue in Python using List
o | 1
8
4 from tabulate import tabulate
5 from utils import drive_menu
6
7
8 class Queue():
9 def __init_ (self, length=9999) -> None:
10 self.q = []
11 if (type(length) != int) or (length <= 0):
12 print(f'Invalid Limit : must be int greater than zero')
13 return
14 self.length = length
S
16 def is_empty(self):
17 return self.q == []
18
19 def front(self):
20 if self.is_empty():
21 print('Empty Queue : No front element')
22 return
23 return self.q[0]
24
25 def rear(self):
26 if self.is_empty():
27 print('Empty Queue : No rear element')
28 return
29 return self.q[len(self.q)-1]
30
31 def enqueue(self, data=None):
32 if not data:
88 data = input('Enter data to enqueue: ')
34 if len(self.q) == self.length:
35 print('Queue Overflow : Size of queue exceeded length')
36 return
37 self.q.append(data)
38
39 def dequeue(self):
40 if self.is_empty():
41 print('Queue Underflow : Empty queue, nothing to dequeue')
42 return
43 rm = self.q[0]
44 del self.q[0O]
45 return rm
46
47 def display(self):
48 if self.is_empty():
49 return
50 print('front')
51 print(tabulate([self.q], tablefmt='fancy grid'))

ol
N

af://n857

58
54 def main():

55 qu = Queue()

56 menus = {}

57 menus['1'] = {'desc': 'Enqueue', 'func': qu.enqueue}
58 menus['2'] = {'desc': 'Dequeue', 'func': qu.dequeue}
59 menus['3'] = {'desc': 'Peek (front)', 'func': qu.front}
60 menus['4'] = {'desc': 'Rear', 'func': qu.rear}

61 menus['5'] = {'desc': 'Display', 'func': qu.display}
62 drive_menu('Queue Operations', menus)

63

64

65 if __name__ == "__main__ ":

66 main()

67

Output

1

2 MENU for Queue Operations

S

4 I I 1

5 | Choice | Description

6 | : :

70 1 | Enqueue |

8 | | : |

9| | 2 | Dequeue |

10 | | | |

11 | | 3 | Peek (front) |

12 | | | |

13 | | 4 | Rear |

14 | | | |

15 | | 5 | Display |

16 | | |

17 Enter your choice or X to quit

18

19 >>>
20

(during the execution of the program the screen is cleared and the menu is displayed several times, for
an aesthetic experience. To keep stuff clean, the same menu is not being repeated here)

1 >>> 1

2 Enter data to enqueue: utopia

S

4 >>> 1

5 Enter data to enqueue: distopia
6

7 >>> 1

8 Enter data to enqueue: ultadanga
9

10 | >>> 5

11 front

12 1 T T 1
13 | utopia | distopia | ultadanga |

[N
I

15
16
17
18
19
20
21
22
283
24
25
26
27
28
29
30

>>> 3

utopia

>>> 4

ultadanga

>>> 2

utopia

>>> 5

front

| distopia | ultadanga |

xvi. Program to create 21 Stick Game so that computer
always wins

Code
1 '"'"' Program to create 21 Stick Game so that computer always wins
2
3 21 Matchstick Puzzle game
4 - In this Puzzle there are 21 Match Sticks.
5 - You and Computer will pick up the sticks one by one.
6 - Sticks can be picked from 1 to 4.
7 - The who, picked up the last stick, is the loser.
g | tr
9
10 from utils import drive_menu, clear_screen
11
12
13 def display_rules():
14 print(__doc__)
15
16
17 def game():
18 '''" The game ''"'
19
20 sticks = 21
21
22 while sticks != 1:
23 clear_screen()
24 print(f'Currently there are {sticks} sticks')
25
26 # ensure user enters an integer
27 try:
28 user_choice = int(input('Choose from 1 to 4 sticks\n>>> '))
29 except ValueError:
30 print('You have entered a non integer value')
31 return 'Game Aborted'
&2
33 # ensure user choice is valid
34 try:
35 assert user_choice in (1, 2, 3, 4)
36 except AssertionError:
37 print('You can choose only between 1 to 4 sticks')
38 return 'Game Aborted'
39
40 # calculate remaining no. of sticks
41 sticks -= user_choice
42 print(f'Now we have {sticks} sticks left. Its my turn now')
43
44 # strategy to win
45 computer_choice = 5-user_choice
46 sticks -= computer_choice
47 print(f'I have picked {computer_choice} sticks')
48
49 print('\nThere is only one stick left. By the rule, you loose @')
50 print('Better Luck next time !\n')

o1
=

return 'Game Ended'

af://n868

52

&
54 def main():
55 menus = {}
56 menus['1'] = {'desc': 'Play the game', 'func': game}
57 menus['2'] = {'desc': 'See the rules', 'func': display_rules}
58 drive_menu('21 Stick Game', menus)
59
60
61 if __name__ == "__main_ ":
62 main()
63
Output

Rules of the 21 Matchstick Puzzle game

e |n this Puzzle there are 21 Match Sticks.

e You and Computer will pick up the sticks one by one.
e Sticks can be picked from 1 to 4.

e The who, picked up the last stick, is the loser.

(during the execution of the program the screen is cleared and the menu is displayed several times, for
an aesthetic experience. To keep stuff clean, the same menu is not being repeated here)

1 MENU for 21 Stick Game

2

3I I 1

4 | Choice | Description

5| | : |

6 | 1 | Play the game |

7 | |

8 | | 2 | See the rules |

9I | |

10 Enter your choice or X to quit

11

12 >>> 1

13

14 Press [ENTER] to continue or CTRL+C to quit
5

16 Currently there are 21 sticks

17 Choose from 1 to 4 sticks

18 | >>> 5

19 You can choose only between 1 to 4 sticks
20 Game Aborted

21

22 Press [ENTER] to continue or CTRL+C to quit
23

24 # MENU IS RE-DISPLAYED

25 >>> 1

26

27 Press [ENTER] to continue or CTRL+C to quit
28

29 Currently there are 21 sticks

30 Choose from 1 to 4 sticks

31 >>> 2

32 Now we have 19 sticks left. Its my turn now

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

I have picked 3 sticks

Currently there are 16 sticks

Choose from 1 to 4 sticks

>>> 4

Now we have 12 sticks left. Its my turn now
I have picked 1 sticks

Currently there are 11 sticks

Choose from 1 to 4 sticks

>>> 2

Now we have 9 sticks left. Its my turn now
I have picked 3 sticks

Currently there are 6 sticks

Choose from 1 to 4 sticks

>>> 4

Now we have 2 sticks left. Its my turn now
I have picked 1 sticks

There is only one stick left. By the rule, you loose ©

Better Luck next time !

Game Ended

xvii. Program to connect with database and store record of
employee and display records.

Code

© 0 N O g »~ W DN

g M D DD DD DD DNDOWWWWWWWWWNNDNDNDNNNNNDNRRPRRRRRPRRRB R R
® © 0 N O O D O®WNROOOOWNOO O ®NRPR O O~NOO O DNWNROOODNOO O DMAWNIR O

Program to connect with database and store record of employee and

display records.

from sqlTor import SqlTor

import mysqgl.connector

from mysqgl.connector import errorcode
from tabulate import tabulate

from utils import clear_screen

def

def

def

input_employee_details():
while True:
try:
name = input('name: ')
assert 5 < len(name) < 20
department = input('department: ')
assert len(department) < 20
salary = int(input('salary: '))
assert salary >= 0
except Exception as err:
print(f'Please enter valid details. {err}'")
else:
break

return name, department, salary

input_emp_id():
while True:
try:
emp_id = int(input('Enter employee id: '))
except ValueError:
print('Invalid Employee id. It must be integer.')
else:
break
return emp_id

create_table(cursor):
''' Takes the cursor object and creates table '''

table_creation = ("CREATE TABLE employees(\
emp_id integer NOT NULL PRIMARY KEY,\
name char(20) NOT NULL,\
department char(20) NOT NULL,\
salary integer NOT NULL);")

try:
cursor.execute(table_creation)
except mysgl.connector.Error as err:

af://n887

51 if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:

52 print('table already exists')

53] else:

54 print(err)

55) else:

56 print('Created table “employees” successfully')

57

58

59 def display_all(cursor):

60 '''" Display all employees '''

61

62 gquery = "SELECT * FROM employees"

63

64 try:

65 cursor.execute(query)

66 except Exception as err:

67 print(err)

68 else:

69 employees = cursor.fetchall()

70 if employees:

71 print(f'''\n\nHere is the list of all employees

72 \n{tabulate(employees, tablefmt="'fancy_grid', headers=
['"emp_id', 'name', 'department', 'salary'])}\n''")

73 else:

74 print('No employees recorded yet')

75

76

77 def record_new(cursor):

78 ''' Record a new employee '''

79

80 print('Enter the details to add new employee.\n')

81

82 emp_id = input_emp_id()

83

84 name, department, salary = input_employee_details()

85

86 insert_employee = f"INSERT INTO employees \

87 VALUES({emp_id}, \

88 '{name}', '{department}', {salary})"

89

90 try:

91 cursor.execute(insert_employee)

92 except Exception as err:

93 if err.errno == errorcode.ER_DUP_ENTRY:

94 print('Duplicate entry. emp_id must be unique.')

95 else:

96 print('New employee added successfully ©')

97

98

99 if __name_ == "__main__ ":

100

101 with SglTor() as my_con:

102 cursor = my_con.cursor()

103 create_table(cursor)

104 while True:

105 clear_screen()

106 display_all(cursor)

107 print('RECORD NEW EMPLOYEES')

108
109
110

record_new(cursor)
my_con.commit()

> python q17_dbRecord.py
table already exists

Press [ENTER] to continue or CTRL+C to quit

screen gets cleared

No employees recorded yet
RECORD NEW EMPLOYEES
Enter the details to add new employee.

Enter employee id: 12

name: Hans Chen

department: Sales

salary: 10000

New employee added successfully

Press [ENTER] to continue or CTRL+C to quit

screen gets cleared

Here is the list of all employees

emp_id name department

salary

12 Hans Chen Sales

10000

RECORD NEW EMPLOYEES
Enter the details to add new employee.

Enter employee id: 13

name: Jay Chandran

department: Coding

salary: 100000000

New employee added successfully

Press [ENTER] to continue or CTRL+C to quit

screen gets cleared

Here is the list of all employees

! T T T 1
| emp_id | name | department | salary |
; i i i I
| 12 | Hans Chen | sales | 10000 |
I ! ! I I
| 13 | Jay Chandran | Coding | 100000000 |
| 1 1 1 |

52
53
54
55
56
57
58

RECORD NEW EMPLOYEES
Enter the details to add new employee.

Enter employee id: AC
Interrupt recieved. Quitting.

xviii. Program to connect with database and search
employee number in table employee and display record, if
empno not found display appropriate message.

Code

1 '"''" Program to connect with database and search employee number in table
employee

2 and display record, if empno not found display appropriate message. '''
3
4 from utils import clear_screen
5 from sqlTor import SqglTor
6 from g17_dbRecord import input_emp_id
7
8
9 def get_employee(cursor) -> tuple or None:
10 """ Input employee id and fetch details of employee.
11 Returns a tuple or None if not found '"'
12
13 emp_id = input_emp_id()
14
15 query = f'SELECT * FROM employees WHERE emp_id={emp_id}"'
16
17 try:
18 cursor.execute(query)
19 except Exception as err:
20 print(err)
21 else:
22 employees = cursor.fetchall()
23 if employees:
24 return employees[0]
25)
26
27 if __name__ == "__main__ ":
28
29 with SglTor() as my_con:
30 cursor = my_con.cursor()
31
32 while True:
33 clear_screen()
34 print('SEARCH EMPLOYEE')
85 emp = get_employee(cursor)
36 if emp:
37 print('Record found &')
38 print(f'""'
39 name: {emp[1]},
40 department: {emp[2]},
41 salary: {emp[3]}''")
42 else:
43 print('Employee Not found @')
44

Output

1 SEARCH EMPLOYEE

af://n895

© 0 N O 0o b~ WN

N R R R R R R R R R R
© © 0 N O U A WNR O

Enter employee id: 12
Record found &

name: Hans Chen,
department: Sales,
salary: 10000

Press [ENTER] to continue or CTRL+C to quit
screen gets cleared

SEARCH EMPLOYEE

Enter employee id: 100

Employee Not found ®

Press [ENTER] to continue or CTRL+C to quit

AC
Interrupt recieved. Quitting.

xix. Program to connect with database and update the
employee record of entered empno.

Code

1 ''' Program to connect with database and update the employee record of
entered empno. '''

2
3 from utils import clear_screen
4 from sqlTor import SqglTor
5
6 from q18_dbSearch import get_employee
7 from g17_dbRecord import input_employee_details
8
9
10 def update_employee(cursor):
11 """ Update an employee '''
12
13 emp = get_employee(cursor)
14
15 if not emp:
16 print('Employee does not exist.')
17 return
18
19 print('Enter new details of employee.')
20 name, department, salary = input_employee_details()
21
22 employee_updation = f"UPDATE employees \
23 SET name='{name}',6\
24 department="'{department}',\
25 salary={salary} \
26 WHERE emp_id={emp[0]};"
27
28 try:
29 cursor.execute(employee_updation)
30 except Exception as err:
31 print(err)
32 else:
33 print('Update Successful!")
34
S5
36 if __name__ == "__main_ ":
37 with SqlTor() as my_con:
38 cursor = my_con.cursor()
39 while True:
40 clear_screen()
41 print('UPDATE EMPLOYEE')
42 update_employee(cursor)
43 my_con.commit()
44

Output

2 UPDATE EMPLOYEE

af://n903

© 0 N o 0o b~ W

10
11
12
13
14
15
16
17
18
19
20
21

Enter employee id: 12

Enter new details of employee.
name: Aahnik Daw

department: Machine Learning
salary: 10

Update Successful!

Press [ENTER] to continue or CTRL+C to quit
screen gets cleared

UPDATE EMPLOYEE

Enter employee id: 100

Employee does not exist.

Press [ENTER] to continue or CTRL+C to quit

AC
Interrupt recieved. Quitting.

xx. Program to connect with database and delete the record
of entered employee number.

Code
1 ''' Program to connect with database and delete the record of entered
employee number. '''

2

3 from sqlTor import SqlTor

4 from utils import clear_screen

5 from g18_dbSearch import get_employee

6

7

8 def delete_employee(cursor):

9 '''" Delete an employee '''
10
11 emp = get_employee(cursor)
12
13 if not emp:
14 print('Employee does not exist.')
15 return
16
17 employee_deletion = f'DELETE FROM employees WHERE emp_id={emp[0]}"'
18
19 try:
20 cursor.execute(employee_deletion)
21 except Exception as err:
22 print(err)
28 else:

24 print('Successfully deleted.')

25)

26

27 if _name__ == "__main__ ":

28

29 with SglTor() as my_con:
30 cursor = my_con.cursor()

31 while True:

32 clear_screen()
33 print ('DELETE EMPLOYEE')
34 delete_employee(cursor)

35 my_con.commit()
36
Output

1 DELETE EMPLOYEE

2 Enter employee id: 12

3 Successfully deleted.

4

5 Press [ENTER] to continue or CTRL+C to quit
6

7 # screen gets cleared

8

9 DELETE EMPLOYEE

10 Enter employee id: 100

af://n912

11
12
13
14
15

Employee does not exist.

Press [ENTER] to continue or CTRL+C to quit
AC
Interrupt recieved. Quitting.

Helper scripts

utils.py

2 ''' General purpose utility module, to reduce number of lines of code in
solution

3 Enables my code to be DRY (Dont Repeat Yourself)

4 i

5

6 import os

7 from tabulate import tabulate

8 import sys

9 import signal

10

11

12 def handle_interrupt(*args):

13 print('\nInterrupt recieved. Quitting.')

14 sys.exit(0)

15

16

17 def clear_screen():

18

19 # handle user interrupt

20 signal.signal(signal.SIGTERM, handle_interrupt)

21 signal.signal(signal.SIGINT, handle_interrupt)

22

23 # wait for user to see current screen

24 input('\nPress [ENTER] to continue or CTRL+C to quit\n')

25

26 if os.name == 'posix':

27 # for Linux and Mac

28 os.system('clear')

29 else:

30 # for Windows

31 os.system('cls")

&2

83

34 def drive_menu(heading: str, menus: dict) -> None:

35 '''" Function to allow a menu driven program

36

37 Args:

38 heading (str): heading to be displayed on top of menu

39 menus (dict): dictionary of menus containing

40 key (menu id) value (another dictionary having “desc” and “func’

41 et

42

43 table = [[ch, menu['desc']] for ch, menu in menus.items()]

44 menu_chart = f'"'

45 MENU for {heading}

46 \n{tabulate(table, tablefmt="'fancy_grid', headers=
['Choice', 'Description'])}

47 Enter your choice or X to quit

48 \n>>> '

49 choice = "'

50 while choice != 'X':

)

af://n920

51
52
53
54
55
56
57
58
59
60
61

clear_screen()
choice = input(menu_chart)
if choice in menus.keys():
val = menus[choice]['func']()
if val:
print(val)
elif choice == 'X':
print('Bye &)
else:
print('INVALID CHOICE'")

sqlTor.py

© 0 N O 0o b~ W N B

W NN DNDNDMDNMDMNMNNMNNMNNMNRERPRRPRPERERRPRPRPRRPRERRERRPR PR
© © 0 N O OO0 WNEFEF O O 00 NO O b W NPRFE O

An utility module that helps to connect to the my sgl database

import mysgl.connector
import yaml

read the config file, and load it into a dict
with open('config.yaml') as f:
config = yaml.full load(f)

class SqlTor():
'''" Context manager to enable easy connection to database

def __init_ (self) -> None:
self.conn = mysql.connector.connect(**config)

def __enter__ (self):
"' Entry point '''
if self.conn.is_connected():
return self.conn
else:
raise Exception('Not connected to MySQL')

def __exit_ (self, exception_type, exception_value, traceback):
LI EXlt LI I
self.conn.close()

SQL

the full emp table

i. To display the all information of Sales department.

1
2
8
4
5
6

SELECT
FROM
emp
WHERE
department = 'Sales';
Id Name Age DepartmeniSal Sex
1 Arprit 62 Sales 38000 M
3 Kareem 32 Sales 17000 M
8 Zareen 45 Sales 28000 F
10 Shilpa 23 Sales 22000 F
[HULL I HULL | UL I HULL | [HULL | [HULL |

ii. To display all information about the employees whose
name starts with 'K'.

1
2
3
4
5
6
7

SELECT
*

FROM
emp
WHERE

name LIKE 'K%';

o

0o | W

Name Age Departmeni Sal Sex
Kareem 32 Sales 17000 M
Kettaki 26 Finance 60000 F
Kush 29 Accounts 32000 M

iii. To list the name of female employees who are in Finance
department.

1
2
S
4
5
6

SELECT
name
FROM
emp
WHERE

sex = 'F' AND department = 'Finance';

af://n928
https://raw.githubusercontent.com/aahnik/cbse-xii-cs-proj/main/practicals/sql/outputs/emp_table.png
af://n931
af://n935
af://n938

name
Kettaki
Ankita

iv. To display name and sex of all the employees whose age
is in the range of 40 to 50 in ascending order of their name.

1 SELECT

2 name, sex

3 FROM

4 emp

5 WHERE

6 age BETWEEN 40 AND 50
7 ORDER BY name;

hame sex
Arun M
Zareen F

v. To count the number of female employees with age
greater than 20 and who are in Accounts department.

1 SELECT

2 COUNT(*) 'female emp older than 20 in accounts'
3 FROM

4 emp></div>

5 WHERE

6 age > 20 AND department = 'Accounts';

female emp older than 20 in

3

af://n941
af://n944

the full games table

vi. To display the name of all Games with their GCodes.

1
2
S
4

SELECT

gamename, gcode

FROM

games;

gamename gcode
Carom Board 101
Badminton 102
Table Tennis 103
Chess 105
Lawn Tennis 108

vii. To display details of those games which are having
PrizeMoney more than 7000.

1
2
&
4
5
6
7

SELECT
*

FROM

games

WHERE

prizemoney > 7000;

GCode GameName Number PrizeMoney ScheduleDate

103 Table Tennis 4 8000 14-Feb-2021
105 Chess 2 9000 02-Jan-2021
108 Lawn Tennis 4 25000 19-Mar-2021

viii. To display the content of the GAMES table in ascending
order of ScheduleDate.

1
2
3
4
5

SELECT
*

FROM

games

ORDER BY scheduledate;

http://outputs/games_table.png
af://n950
af://n953
af://n956

GCode GameName

105
102
103
108
101

Chess 2
Badminton 2
Table Tennis 4
Lawn Tennis 4
Carom Board 2

9000
1200
8000
25000
5000

Number PrizeMoney ScheduleDate

02-Jan-2021
12-Dec-2020
14-Feb-2021
19-Mar-2021
23-Jan-2021

ix. To display sum of PrizeMoney for each of the Numberof
participation groupings (as shown in column number 2 or 4).

1
2
3
4
S

SELECT

number, SUM(prizemoney)

FROM

games

GROUP BY number;

number SUM(prizemoney]
2 15200
4 33000

x. To display the sum of prize money of all games.

1
2
3
4
5

SELECT

SUM(prizemoney)

FROM

games;

SUM(prizemoney|
48200

af://n960
af://n963

the full loans table

xi. Display the sum of all Loan Amount whose Interest rate is
greater than 10.

SELECT
SUM(loan_amount)

1

2

3 FROM
4 loans

5 WHERE

6 int_rate > 10;

SUM(loan_amount

1000000

xii. Display the Maximum Interest from Loans table.

1 SELECT

2 MAX(int_rate)
3 FROM

4 loans;

MAX(int rate)
11.50

xiii. Display the count of all loan holders whose name ends
with ‘SHARMA'.

SELECT
COUNT(cust_name)
FROM
loans
WHERE
cust_name LIKE '%SHARMA';

o o b~ W N B

COUNT(cust name)
2

xiv. Display the count of all loan holders whose Interest is
NULL.

SELECT

COUNT (cust_name)
FROM

loans
WHERE

int_rate IS NULL;

o 0~ WN B

https://raw.githubusercontent.com/aahnik/cbse-xii-cs-proj/main/practicals/sql/outputs/loans_table.png
af://n972
af://n976
af://n980
af://n984

COUNT(cust name)
2

xv. Display the Interest-wise details of Loan Account
Holders.

SELECT
*
FROM
loans
ORDER BY interest;

a b~ W N B

AccNo Cust Name Loan_Amoun Installments Int_Rate Start_Date Interest Adress

101 R.K.GUPTA 300000 36 11.00 19-07-2019 1200
103 K.PJAIN 300000 36 08-03-2017 1600
102 S.P.SHARMA 500000 48 9.00 22-03-2018 1800
104 M.P.YADAV 800000 60 9.00 06-12-2018 2250
106 P.SHARMA 700000 60 11.50 05-06-2018 3500
107 K.S.DHALL 500000 48 05-03-2018 3800

xvi. Display the Interest-wise details of Loan Account
Holders with at least 10 installments remaining

SELECT
*
FROM
loans
WHERE
installments >= 10
ORDER BY interest;

0 N o o~ WN B

AccNo Cust Name Loan Amoun Installment: Int Rate Start Date Interest Adress

101 R.K.GUPTA 300000 36 11.00 19-07-2019 1200
103 K.PJAIN 300000 36 08-03-2017 1600
102 S.P.SHARMA 500000 48 9.00 22-03-2018 1800
104 M.P.YADAV 800000 60 9.00 06-12-2018 2250
106 P.SHARMA 700000 60 11.50 05-06-2018 3500
107 K.S.DHALL 500000 48 05-03-2018 3800

xvii. Display the Interest-wise count of all loan holders
whose Installment due is more than 5 in each group.

af://n988
af://n991
af://n994

SELECT
int_rate, COUNT(*)
FROM
loans
GROUP BY
int_rate
HAVING
SUM(installments)>5;

© 00 N o o~ WDN R

int_rate COUNT(*)

11.00 1
9.00 2
2
11.50 1

xviii. Add one more column name ‘Address’ to the LOANS
table.

ALTER TABLE loans
ADD (Adress TEXT);

A W N B

0 row(s) affected

Records: 0 Duplicates: 0 Warnings: 0 15175 see

O 28 03:35:16 ALTER TABLE loans ADD (Address TEXT)

xix. Reduce Interest rate by 1 of all loan holders whose
Interest is not NULL.

1 UPDATE loans

2 SET

3 int_rate = int_rate - 1
4 WHERE

5 int_rate IS NOT NULL;

4 row(s) affected

Rows matched: 4 Changed: 4 Warnings: 0 Oiiad sec

v 29 03:35:46 UPDATE loans SET int_rate = int_rate - 1 WHE...

xX. Delete the record of customer whose account number is
105.

1 DELETE FROM loans
2 WHERE

3 accno = 105;
4

O 30 03:36:30 DELETE FROM loans WHERE accno =105 0 row(s) affected 0.00039 sec

af://n998
af://n1002
af://n1005

	CBSE Computer Science Practicals
	Python
	i. A program to calculate the n-th term of Fibonacci series using function.
	ii. Program to search any word in given string/sentence using function.
	iii. Read a text file line by line and display each word separated by a # .
	iv. Read a text file and display the number of vowels/consonants/uppercase/lowercase characters and digits in the file.
	v. Read a text file and display the largest word and maximum number of characters present in a line from text file.
	vi. Write a program using Dictionary and Text file to store roman numbers and find their equivalent.
	vii. Write a menu driven program to perform read and write operations using a text file called “student.txt” counting student roll_no, name and address.
	viii. Create a binary file with name and roll number. Search for a given roll number and display the name, if not found display appropriate message.
	ix. Create a binary file with roll number, name and marks. Input a roll number and update the marks.
	x. Remove all the lines that contain the character `a' in a file and write it to another file.
	xi. Write a random number generator that generates random numbers between 1 and 6 (simulates a dice).
	xii. Take a sample of ten phishing e-mails (or any text file) and find most commonly occurring word(s).
	xiii. Program to create CSV file and store empno,name,salary and search any empno and display name,salary and if not found appropriate message.
	xiv. Program to implement Stack in Python using List.
	xv. Program to implement Queue in Python using List.
	xvi. Program to create 21 Stick Game so that computer always wins
	xvii. Program to connect with database and store record of employee and display records.
	xviii. Program to connect with database and search employee number in table employee and display record, if empno not found display appropriate message.
	xix. Program to connect with database and update the employee record of entered empno.
	xx. Program to connect with database and delete the record of entered employee number.
	Helper scripts

	SQL
	i. To display the all information of Sales department.
	ii. To display all information about the employees whose name starts with 'K'.
	iii. To list the name of female employees who are in Finance department.
	iv. To display name and sex of all the employees whose age is in the range of 40 to 50 in ascending order of their name.
	v. To count the number of female employees with age greater than 20 and who are in Accounts department.
	vi. To display the name of all Games with their GCodes.
	vii. To display details of those games which are having PrizeMoney more than 7000.
	viii. To display the content of the GAMES table in ascending order of ScheduleDate.
	ix. To display sum of PrizeMoney for each of the Numberof participation groupings (as shown in column number 2 or 4).
	x. To display the sum of prize money of all games.
	xi. Display the sum of all Loan Amount whose Interest rate is greater than 10.
	xii. Display the Maximum Interest from Loans table.
	xiii. Display the count of all loan holders whose name ends with ‘SHARMA’.
	xiv. Display the count of all loan holders whose Interest is NULL.
	xv. Display the Interest-wise details of Loan Account Holders.
	xvi. Display the Interest-wise details of Loan Account Holders with at least 10 installments remaining
	xvii. Display the Interest-wise count of all loan holders whose Installment due is more than 5 in each group.
	xviii. Add one more column name ‘Address’ to the LOANS table.
	xix. Reduce Interest rate by 1 of all loan holders whose Interest is not NULL.
	xx. Delete the record of customer whose account number is 105.

