Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

llama-cpp-python not using GPU on google colab #1780

Open
AnirudhJM24 opened this issue Oct 2, 2024 · 3 comments
Open

llama-cpp-python not using GPU on google colab #1780

AnirudhJM24 opened this issue Oct 2, 2024 · 3 comments

Comments

@AnirudhJM24
Copy link

Prerequisites

Please answer the following questions for yourself before submitting an issue.

  • [ Yes] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
  • [ Yes] I carefully followed the README.md.
  • [ Yes] I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
  • [ Yes] I reviewed the Discussions, and have a new bug or useful enhancement to share.

Expected Behavior

Expected to load my model on the T4 GPU on colab

CUDA VERSION - 12.2

INSTALL COMMAND - !pip install llama-cpp-python
--extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu122 --verbose

Current Behavior

Zero GPU Usage

llama_model_loader: loaded meta data with 33 key-value pairs and 291 tensors from /root/.cache/huggingface/hub/models--AnirudhJM24--Llama3-OpenBioLLM-8B-Q4_K_M-GGUF/snapshots/8f01788085a3ac57ddb617392855d6188514b974/llama3-openbiollm-8b-q4_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Meta Llama 3 8B
llama_model_loader: - kv 3: general.organization str = Meta Llama
llama_model_loader: - kv 4: general.basename str = Meta-Llama-3
llama_model_loader: - kv 5: general.size_label str = 8B
llama_model_loader: - kv 6: general.license str = llama3
llama_model_loader: - kv 7: general.base_model.count u32 = 1
llama_model_loader: - kv 8: general.base_model.0.name str = Meta Llama 3 8B
llama_model_loader: - kv 9: general.base_model.0.organization str = Meta Llama
llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/meta-llama/Met...
llama_model_loader: - kv 11: general.tags arr[str,10] = ["llama-3", "llama", "Mixtral", "inst...
llama_model_loader: - kv 12: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 13: llama.block_count u32 = 32
llama_model_loader: - kv 14: llama.context_length u32 = 8192
llama_model_loader: - kv 15: llama.embedding_length u32 = 4096
llama_model_loader: - kv 16: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 17: llama.attention.head_count u32 = 32
llama_model_loader: - kv 18: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 19: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 20: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 21: general.file_type u32 = 15
llama_model_loader: - kv 22: llama.vocab_size u32 = 128256
llama_model_loader: - kv 23: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 24: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 25: tokenizer.ggml.pre str = smaug-bpe
llama_model_loader: - kv 26: tokenizer.ggml.tokens arr[str,128256] = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 27: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 28: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 29: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 30: tokenizer.ggml.eos_token_id u32 = 128001
llama_model_loader: - kv 31: tokenizer.ggml.padding_token_id u32 = 128001
llama_model_loader: - kv 32: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q4_K: 193 tensors
llama_model_loader: - type q6_K: 33 tensors
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.8000 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 14336
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 8B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 8.03 B
llm_load_print_meta: model size = 4.58 GiB (4.89 BPW)
llm_load_print_meta: general.name = Meta Llama 3 8B
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128001 '<|end_of_text|>'
llm_load_print_meta: PAD token = 128001 '<|end_of_text|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
llm_load_print_meta: EOG token = 128001 '<|end_of_text|>'
llm_load_print_meta: EOG token = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: ggml ctx size = 0.14 MiB
llm_load_tensors: CPU buffer size = 4685.30 MiB
........................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CPU KV buffer size = 64.00 MiB
llama_new_context_with_model: KV self size = 64.00 MiB, K (f16): 32.00 MiB, V (f16): 32.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.49 MiB
llama_new_context_with_model: CPU compute buffer size = 258.50 MiB
llama_new_context_with_model: graph nodes = 1030
llama_new_context_with_model: graph splits = 1
AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
Model metadata: {'tokenizer.ggml.eos_token_id': '128001', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'gpt2', 'llama.vocab_size': '128256', 'general.file_type': '15', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.rope.freq_base': '500000.000000', 'tokenizer.ggml.bos_token_id': '128000', 'llama.attention.head_count': '32', 'llama.feed_forward_length': '14336', 'general.architecture': 'llama', 'llama.attention.head_count_kv': '8', 'llama.block_count': '32', 'tokenizer.ggml.padding_token_id': '128001', 'general.basename': 'Meta-Llama-3', 'llama.embedding_length': '4096', 'general.base_model.0.organization': 'Meta Llama', 'tokenizer.ggml.pre': 'smaug-bpe', 'llama.context_length': '8192', 'general.name': 'Meta Llama 3 8B', 'llama.rope.dimension_count': '128', 'general.base_model.0.name': 'Meta Llama 3 8B', 'general.organization': 'Meta Llama', 'general.type': 'model', 'general.size_label': '8B', 'general.base_model.0.repo_url': 'https://huggingface.co/meta-llama/Meta-Llama-3-8B', 'general.license': 'llama3', 'general.base_model.count': '1'}

Environment and Context

Google Colab

@lsorber
Copy link
Contributor

lsorber commented Oct 4, 2024

Here's an example that does work on a Google Colab T4 instance:

%pip install --quiet https://github.com/abetlen/llama-cpp-python/releases/download/v0.2.90-cu124/llama_cpp_python-0.2.90-cp310-cp310-linux_x86_64.whl

from llama_cpp import Llama

llm = Llama.from_pretrained(
    repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
    filename="*Q4_K_M.gguf",
    n_ctx=8192,
    n_gpu_layers=-1,
    verbose=True
)

llm("Q: Name the planets in the solar system? A: ")

@werruww
Copy link

werruww commented Nov 5, 2024

!pip install huggingface-hub fsspec==2023.6.0
!pip install --quiet https://github.com/abetlen/llama-cpp-python/releases/download/v0.2.90-cu122/llama_cpp_python-0.2.90-cp310-cp310-linux_x86_64.whl

from llama_cpp import Llama

llm = Llama.from_pretrained(
repo_id="Qwen/Qwen2-0.5B-Instruct-GGUF",
filename="*q8_0.gguf",
n_ctx=8192,
n_gpu_layers=-1,
verbose=True
)

llm("Q: Name the planets in the solar system? A: ")

Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (0.24.7)
Requirement already satisfied: fsspec==2023.6.0 in /usr/local/lib/python3.10/dist-packages (2023.6.0)
Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (3.16.1)
Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (24.1)
Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (6.0.2)
Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (2.32.3)
Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (4.66.6)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (4.12.2)
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (3.4.0)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (2.2.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (2024.8.30)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 443.8/443.8 MB 1.4 MB/s eta 0:00:00
llama_model_loader: loaded meta data with 26 key-value pairs and 290 tensors from /root/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct-GGUF/snapshots/198f08841147e5196a6a69bd0053690fb1fd3857/./qwen2-0_5b-instruct-q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.name str = qwen2-0_5b-instruct
llama_model_loader: - kv 2: qwen2.block_count u32 = 24
llama_model_loader: - kv 3: qwen2.context_length u32 = 32768
llama_model_loader: - kv 4: qwen2.embedding_length u32 = 896
llama_model_loader: - kv 5: qwen2.feed_forward_length u32 = 4864
llama_model_loader: - kv 6: qwen2.attention.head_count u32 = 14
llama_model_loader: - kv 7: qwen2.attention.head_count_kv u32 = 2
llama_model_loader: - kv 8: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 9: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 10: general.file_type u32 = 7
llama_model_loader: - kv 11: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 12: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,151936] = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 15: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 17: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 19: tokenizer.chat_template str = {% for message in messages %}{% if lo...
llama_model_loader: - kv 20: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 21: general.quantization_version u32 = 2
llama_model_loader: - kv 22: quantize.imatrix.file str = ../Qwen2/gguf/qwen2-0_5b-imatrix/imat...
llama_model_loader: - kv 23: quantize.imatrix.dataset str = ../sft_2406.txt
llama_model_loader: - kv 24: quantize.imatrix.entries_count i32 = 168
llama_model_loader: - kv 25: quantize.imatrix.chunks_count i32 = 1937
llama_model_loader: - type f32: 121 tensors
llama_model_loader: - type q8_0: 169 tensors
llm_load_vocab: special tokens cache size = 293
llm_load_vocab: token to piece cache size = 0.9338 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = qwen2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 151936
llm_load_print_meta: n_merges = 151387
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 896
llm_load_print_meta: n_layer = 24
llm_load_print_meta: n_head = 14
llm_load_print_meta: n_head_kv = 2
llm_load_print_meta: n_rot = 64
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 64
llm_load_print_meta: n_embd_head_v = 64
llm_load_print_meta: n_gqa = 7
llm_load_print_meta: n_embd_k_gqa = 128
llm_load_print_meta: n_embd_v_gqa = 128
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 4864
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 1B
llm_load_print_meta: model ftype = Q8_0
llm_load_print_meta: model params = 494.03 M
llm_load_print_meta: model size = 500.79 MiB (8.50 BPW)
llm_load_print_meta: general.name = qwen2-0_5b-instruct
llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token = 151645 '<|im_end|>'
llm_load_print_meta: PAD token = 151643 '<|endoftext|>'
llm_load_print_meta: LF token = 148848 'ÄĬ'
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: ggml ctx size = 0.25 MiB
llm_load_tensors: offloading 24 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 25/25 layers to GPU
llm_load_tensors: CPU buffer size = 137.94 MiB
llm_load_tensors: CUDA0 buffer size = 500.84 MiB
...........................................................
llama_new_context_with_model: n_ctx = 8192
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 96.00 MiB
llama_new_context_with_model: KV self size = 96.00 MiB, K (f16): 48.00 MiB, V (f16): 48.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.58 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 298.50 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 17.76 MiB
llama_new_context_with_model: graph nodes = 846
llama_new_context_with_model: graph splits = 2
AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
Model metadata: {'quantize.imatrix.entries_count': '168', 'quantize.imatrix.dataset': '../sft_2406.txt', 'quantize.imatrix.chunks_count': '1937', 'quantize.imatrix.file': '../Qwen2/gguf/qwen2-0_5b-imatrix/imatrix.dat', 'tokenizer.ggml.add_bos_token': 'false', 'tokenizer.ggml.bos_token_id': '151643', 'general.architecture': 'qwen2', 'qwen2.block_count': '24', 'qwen2.context_length': '32768', 'tokenizer.chat_template': "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}", 'qwen2.attention.head_count_kv': '2', 'tokenizer.ggml.padding_token_id': '151643', 'qwen2.embedding_length': '896', 'qwen2.attention.layer_norm_rms_epsilon': '0.000001', 'qwen2.attention.head_count': '14', 'tokenizer.ggml.eos_token_id': '151645', 'qwen2.rope.freq_base': '1000000.000000', 'general.file_type': '7', 'general.quantization_version': '2', 'qwen2.feed_forward_length': '4864', 'tokenizer.ggml.model': 'gpt2', 'general.name': 'qwen2-0_5b-instruct', 'tokenizer.ggml.pre': 'qwen2'}
Available chat formats from metadata: chat_template.default
Using gguf chat template: {% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system
You are a helpful assistant.<|im_end|>
' }}{% endif %}{{'<|im_start|>' + message['role'] + '
' + message['content'] + '<|im_end|>' + '
'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
' }}{% endif %}
Using chat eos_token: <|im_end|>
Using chat bos_token: <|endoftext|>

llama_print_timings: load time = 20.02 ms
llama_print_timings: sample time = 2.58 ms / 16 runs ( 0.16 ms per token, 6194.35 tokens per second)
llama_print_timings: prompt eval time = 19.89 ms / 13 tokens ( 1.53 ms per token, 653.76 tokens per second)
llama_print_timings: eval time = 141.56 ms / 15 runs ( 9.44 ms per token, 105.96 tokens per second)
llama_print_timings: total time = 185.27 ms / 28 tokens
{'id': 'cmpl-84a4335e-e465-4af4-a004-5c81d352fab5',
'object': 'text_completion',
'created': 1730768059,
'model': '/root/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct-GGUF/snapshots/198f08841147e5196a6a69bd0053690fb1fd3857/./qwen2-0_5b-instruct-q8_0.gguf',
'choices': [{'text': '5. Mercury, Venus, Earth, Mars, Jupiter, Saturn. Question:',
'index': 0,
'logprobs': None,
'finish_reason': 'length'}],
'usage': {'prompt_tokens': 13, 'completion_tokens': 16, 'total_tokens': 29}}

@werruww
Copy link

werruww commented Nov 5, 2024

llm_load_tensors: offloading 24 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 25/25 layers to GPU
llm_load_tensors: CPU buffer size = 137.94 MiB
llm_load_tensors: CUDA0 buffer size = 500.84 MiB
...........................................................
llama_new_context_with_model: n_ctx = 8192
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 96.00 MiB
llama_new_context_with_model: KV self size = 96.00 MiB, K (f16): 48.00 MiB, V (f16): 48.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.58 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 298.50 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 17.76 MiB

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants