-
Notifications
You must be signed in to change notification settings - Fork 970
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
llama-cpp-python not using GPU on google colab #1780
Comments
Here's an example that does work on a Google Colab T4 instance: %pip install --quiet https://github.com/abetlen/llama-cpp-python/releases/download/v0.2.90-cu124/llama_cpp_python-0.2.90-cp310-cp310-linux_x86_64.whl
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
filename="*Q4_K_M.gguf",
n_ctx=8192,
n_gpu_layers=-1,
verbose=True
)
llm("Q: Name the planets in the solar system? A: ") |
!pip install huggingface-hub fsspec==2023.6.0 from llama_cpp import Llama llm = Llama.from_pretrained( llm("Q: Name the planets in the solar system? A: ") Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (0.24.7) llama_print_timings: load time = 20.02 ms |
llm_load_tensors: offloading 24 repeating layers to GPU |
Prerequisites
Please answer the following questions for yourself before submitting an issue.
Expected Behavior
Expected to load my model on the T4 GPU on colab
CUDA VERSION - 12.2
INSTALL COMMAND - !pip install llama-cpp-python
--extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu122 --verbose
Current Behavior
Zero GPU Usage
llama_model_loader: loaded meta data with 33 key-value pairs and 291 tensors from /root/.cache/huggingface/hub/models--AnirudhJM24--Llama3-OpenBioLLM-8B-Q4_K_M-GGUF/snapshots/8f01788085a3ac57ddb617392855d6188514b974/llama3-openbiollm-8b-q4_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Meta Llama 3 8B
llama_model_loader: - kv 3: general.organization str = Meta Llama
llama_model_loader: - kv 4: general.basename str = Meta-Llama-3
llama_model_loader: - kv 5: general.size_label str = 8B
llama_model_loader: - kv 6: general.license str = llama3
llama_model_loader: - kv 7: general.base_model.count u32 = 1
llama_model_loader: - kv 8: general.base_model.0.name str = Meta Llama 3 8B
llama_model_loader: - kv 9: general.base_model.0.organization str = Meta Llama
llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/meta-llama/Met...
llama_model_loader: - kv 11: general.tags arr[str,10] = ["llama-3", "llama", "Mixtral", "inst...
llama_model_loader: - kv 12: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 13: llama.block_count u32 = 32
llama_model_loader: - kv 14: llama.context_length u32 = 8192
llama_model_loader: - kv 15: llama.embedding_length u32 = 4096
llama_model_loader: - kv 16: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 17: llama.attention.head_count u32 = 32
llama_model_loader: - kv 18: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 19: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 20: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 21: general.file_type u32 = 15
llama_model_loader: - kv 22: llama.vocab_size u32 = 128256
llama_model_loader: - kv 23: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 24: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 25: tokenizer.ggml.pre str = smaug-bpe
llama_model_loader: - kv 26: tokenizer.ggml.tokens arr[str,128256] = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 27: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 28: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 29: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 30: tokenizer.ggml.eos_token_id u32 = 128001
llama_model_loader: - kv 31: tokenizer.ggml.padding_token_id u32 = 128001
llama_model_loader: - kv 32: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q4_K: 193 tensors
llama_model_loader: - type q6_K: 33 tensors
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.8000 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 14336
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 8B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 8.03 B
llm_load_print_meta: model size = 4.58 GiB (4.89 BPW)
llm_load_print_meta: general.name = Meta Llama 3 8B
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128001 '<|end_of_text|>'
llm_load_print_meta: PAD token = 128001 '<|end_of_text|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
llm_load_print_meta: EOG token = 128001 '<|end_of_text|>'
llm_load_print_meta: EOG token = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: ggml ctx size = 0.14 MiB
llm_load_tensors: CPU buffer size = 4685.30 MiB
........................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CPU KV buffer size = 64.00 MiB
llama_new_context_with_model: KV self size = 64.00 MiB, K (f16): 32.00 MiB, V (f16): 32.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.49 MiB
llama_new_context_with_model: CPU compute buffer size = 258.50 MiB
llama_new_context_with_model: graph nodes = 1030
llama_new_context_with_model: graph splits = 1
AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
Model metadata: {'tokenizer.ggml.eos_token_id': '128001', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'gpt2', 'llama.vocab_size': '128256', 'general.file_type': '15', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.rope.freq_base': '500000.000000', 'tokenizer.ggml.bos_token_id': '128000', 'llama.attention.head_count': '32', 'llama.feed_forward_length': '14336', 'general.architecture': 'llama', 'llama.attention.head_count_kv': '8', 'llama.block_count': '32', 'tokenizer.ggml.padding_token_id': '128001', 'general.basename': 'Meta-Llama-3', 'llama.embedding_length': '4096', 'general.base_model.0.organization': 'Meta Llama', 'tokenizer.ggml.pre': 'smaug-bpe', 'llama.context_length': '8192', 'general.name': 'Meta Llama 3 8B', 'llama.rope.dimension_count': '128', 'general.base_model.0.name': 'Meta Llama 3 8B', 'general.organization': 'Meta Llama', 'general.type': 'model', 'general.size_label': '8B', 'general.base_model.0.repo_url': 'https://huggingface.co/meta-llama/Meta-Llama-3-8B', 'general.license': 'llama3', 'general.base_model.count': '1'}
Environment and Context
Google Colab
The text was updated successfully, but these errors were encountered: