-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
153 lines (129 loc) · 4.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
import numpy as np
import argparse
from collections import Counter
from trainer import Trainer
from model import get_multi_view, get_single_view
from utils.logger import Logger
from utils.model_config import ModelConfig
from data_mgmt.datasets.ntu_dataset import PoseGraphDataset
def parse_args():
parser = argparse.ArgumentParser(description="Train the model")
parser.add_argument(
"--aggregator",
type=str,
default="average",
help="Aggregator for the GCN output - Options: average, linear, self_attn",
)
parser.add_argument("--lr", type=float, default=5e-5, help="Learning rate")
parser.add_argument(
"--dataset",
type=str,
default="../dataset/Python/raw_npy/",
help="Path to the dataset folder",
)
parser.add_argument("--epochs", type=int, default=50, help="Number of epochs")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
parser.add_argument(
"--shuffle", type=bool, default=True, help="Shuffle the dataset"
)
parser.add_argument(
"--output_folder",
type=str,
default="./output/",
help="Path to the output folder",
)
parser.add_argument(
"--single_view",
action="store_true",
help="Use single view",
)
parser.add_argument(
"--logger_config",
type=str,
default="./config/logger.ini",
help="Path to the logging config file",
)
parser.add_argument(
"--model_config",
type=str,
default="./config/model.json",
help="Path to the model config file",
)
parser.add_argument(
"--occlude",
action="store_true",
help="Augment the dataset",
)
args = parser.parse_args()
if args.aggregator not in ["average", "linear", "self_attn"]:
raise ValueError("Invalid aggregator must be one of average, linear, self_attn")
return args
def load_dataset(dataset_folder, logger, occlude=False):
np.random.seed(42)
dataset = PoseGraphDataset(dataset_folder, skip=11, occlude=occlude)
if len(dataset) > 0:
logger.info("Dataset loaded successfully.")
logger.info(f"Dataset size: {len(dataset)}")
else:
logger.error("Dataset loading failed.")
logger.info("Check if the dataset folder is correct.")
exit()
train_size = int(0.75 * len(dataset))
val_size = len(dataset) - train_size
generator = torch.Generator().manual_seed(42)
train_dataset, val_dataset = torch.utils.data.random_split(
dataset, [train_size, val_size], generator=generator
)
test_size = int(0.25 * len(val_dataset))
val_dataset, test_dataset = torch.utils.data.random_split(
val_dataset, [len(val_dataset) - test_size, test_size], generator=generator
)
label_counts = Counter(dataset.labels)
unique_labels = len(list(set(dataset.labels)))
logger.info(f"Number of unique labels: {unique_labels}")
label_counts = dict(sorted(label_counts.items(), key=lambda item: item[0]))
for label, count in label_counts.items():
logger.info(f"Label: {label}, Count: {count}")
return train_dataset, val_dataset, test_dataset
def main():
args = parse_args()
logger = Logger(args.logger_config).get_logger()
logger.info("\n")
logger.info("Loading the dataset...")
train_dataset, val_dataset, test_dataset = load_dataset(
args.dataset, logger, args.occlude
)
logger.info(f"Training dataset size: {len(train_dataset)}")
logger.info(f"Validation dataset size: {len(val_dataset)}")
logger.info(f"Testing dataset size: {len(test_dataset)}")
logger.info(f"Model type: {'Single View' if args.single_view else 'Multi View'}")
model_config = ModelConfig(args.model_config).get_config()
if args.single_view:
model, (train_dataloader, val_dataloader, test_dataloader) = get_single_view(
model_config, args, (train_dataset, val_dataset, test_dataset)
)
else:
logger.info(f"Aggregator: {args.aggregator}")
model, (train_dataloader, val_dataloader, test_dataloader) = get_multi_view(
model_config, args, (train_dataset, val_dataset, test_dataset)
)
trainer = Trainer(model, lr=args.lr, logger=logger)
logger.info(f"Batch size: {args.batch_size}")
logger.info(f"Number of epochs: {args.epochs}")
logger.info(f"Learning rate: {args.lr}")
logger.info("Training the model. Please wait...")
trainer.train(
train_dataloader,
val_dataloader,
epochs=args.epochs,
output_path=args.output_folder,
save_model=True,
)
logger.info("")
logger.info("Testing model on the test dataset...")
trainer.test(
test_dataloader, output_path=args.output_folder
)
if __name__ == "__main__":
main()