-
Notifications
You must be signed in to change notification settings - Fork 0
/
losses.py
99 lines (76 loc) · 3.91 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import tensorflow as tf
def d_logistic(real_images, generator, discriminator, z_dim, labels=None):
batch_size = tf.shape(real_images)[0]
z = tf.random.normal(shape=[batch_size, z_dim], dtype=tf.float32)
if labels is None:
labels = tf.random.normal(shape=[batch_size, 0], dtype=tf.float32)
# forward pass
fake_images = generator([z, labels], training=True)
real_scores = discriminator([real_images, labels], training=True)
fake_scores = discriminator([fake_images, labels], training=True)
# gan loss
d_loss = tf.math.softplus(fake_scores)
d_loss += tf.math.softplus(-real_scores)
return d_loss
def d_logistic_r1_reg(real_images, generator, discriminator, z_dim, labels=None):
batch_size = tf.shape(real_images)[0]
z = tf.random.normal(shape=[batch_size, z_dim], dtype=tf.float32)
if labels is None:
labels = tf.random.normal(shape=[batch_size, 0], dtype=tf.float32)
# forward pass
fake_images = generator([z, labels], training=True)
real_scores = discriminator([real_images, labels], training=True)
fake_scores = discriminator([fake_images, labels], training=True)
# gan loss
d_loss = tf.math.softplus(fake_scores)
d_loss += tf.math.softplus(-real_scores)
# gradient penalty
with tf.GradientTape() as r1_tape:
r1_tape.watch([real_images, labels])
real_loss = tf.reduce_sum(discriminator([real_images, labels], training=True))
real_grads = r1_tape.gradient(real_loss, real_images)
r1_penalty = tf.reduce_sum(tf.math.square(real_grads), axis=[1, 2, 3])
r1_penalty = tf.expand_dims(r1_penalty, axis=1)
return d_loss, r1_penalty
def g_logistic_non_saturating(real_images, generator, discriminator, z_dim, labels=None):
batch_size = tf.shape(real_images)[0]
z = tf.random.normal(shape=[batch_size, z_dim], dtype=tf.float32)
if labels is None:
labels = tf.random.normal(shape=[batch_size, 0], dtype=tf.float32)
# forward pass
fake_images = generator([z, labels], training=True)
fake_scores = discriminator([fake_images, labels], training=True)
# gan loss
g_loss = tf.math.softplus(-fake_scores)
return g_loss
def g_logistic_ns_pathreg(real_images, generator, discriminator, z_dim,
pl_mean, pl_minibatch_shrink, pl_denorm, pl_decay,
labels=None):
batch_size = tf.shape(real_images)[0]
z = tf.random.normal(shape=[batch_size, z_dim], dtype=tf.float32)
if labels is None:
labels = tf.random.normal(shape=[batch_size, 0], dtype=tf.float32)
pl_minibatch = tf.maximum(1, tf.math.floordiv(batch_size, pl_minibatch_shrink))
pl_z = tf.random.normal(shape=[pl_minibatch, z_dim], dtype=tf.float32)
if labels is None:
pl_labels = tf.random.normal(shape=[pl_minibatch, 0], dtype=tf.float32)
else:
pl_labels = labels[:pl_minibatch]
# forward pass
fake_images, w_broadcasted = generator([z, labels], ret_w_broadcasted=True, training=True)
fake_scores = discriminator([fake_images, labels], training=True)
g_loss = tf.math.softplus(-fake_scores)
# Evaluate the regularization term using a smaller minibatch to conserve memory.
with tf.GradientTape() as pl_tape:
pl_tape.watch([pl_z, pl_labels])
pl_fake_images, pl_w_broadcasted = generator([pl_z, pl_labels], ret_w_broadcasted=True, training=True)
pl_noise = tf.random.normal(tf.shape(pl_fake_images)) * pl_denorm
pl_noise_applied = tf.reduce_sum(pl_fake_images * pl_noise)
pl_grads = pl_tape.gradient(pl_noise_applied, pl_w_broadcasted)
pl_lengths = tf.math.sqrt(tf.reduce_mean(tf.reduce_sum(tf.math.square(pl_grads), axis=2), axis=1))
# Track exponential moving average of |J*y|.
pl_mean_val = pl_mean + pl_decay * (tf.reduce_mean(pl_lengths) - pl_mean)
pl_mean.assign(pl_mean_val)
# Calculate (|J*y|-a)^2.
pl_penalty = tf.square(pl_lengths - pl_mean)
return g_loss, pl_penalty