diff --git a/Generalized chi-square distribution.mltbx b/Generalized chi-square distribution.mltbx
index d685d06..f7667ca 100644
Binary files a/Generalized chi-square distribution.mltbx and b/Generalized chi-square distribution.mltbx differ
diff --git a/doc/html/GettingStarted.html b/doc/html/GettingStarted.html
index 9b73f77..f110749 100644
--- a/doc/html/GettingStarted.html
+++ b/doc/html/GettingStarted.html
@@ -37,11 +37,11 @@
.matrixElement .verticalEllipsis,.textElement .verticalEllipsis,.rtcDataTipElement .matrixElement .verticalEllipsis,.rtcDataTipElement .textElement .verticalEllipsis {margin-left: 35px; width: 12px; height: 30px; background-repeat: no-repeat; background-image: url("");}
.S10 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S11 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left; }
-.S12 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px 4px 0px 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
Generalized chi-square distribution · Getting started
The generalized chi-square variable is a quadratic form of a normal variable, or equivalently, a linear sum of independent non-central chi-square variables and a normal variable.
For more features and documentation, type:
Bugs/questions/comments to abhranil.das@utexas.edu.
Abhranil Das, Center for Perceptual Systems, University of Texas at Austin
Calculate mean and variance
[mu,v]=gx2stat(w,k,lambda,m,s)
Generate random samples
r=gx2rnd(w,k,lambda,m,s,[1 1e5]);
Calculate pdf and cdf
f=gx2pdf(x,w,k,lambda,m,s)
p=gx2cdf(x,w,k,lambda,m,s,'AbsTol',0,'RelTol',1e-4)
Compare calculated and sampled pdf's
[f,x]=gx2pdf('full',w,k,lambda,m,s);
histogram(r,'normalization','pdf','displaystyle','stairs')
xline(mu,'-',{'\mu \pm \sigma'},'labelorientation','horizontal');
xline(mu-sqrt(v),'-'); xline(mu+sqrt(v),'-');
xlim([mu-2*sqrt(v),mu+2*sqrt(v)]); ylim([0 .015]); ylabel 'pdf'
Compare calculated and sampled cdf's
figure; fplot(@(x) gx2cdf(x,w,k,lambda,m,s));
hold on; histogram(r,'normalization','cdf','displaystyle','stairs')
xline(mu,'-',{'\mu \pm \sigma'},'labelorientation','horizontal');
xline(mu-sqrt(v),'-'); xline(mu+sqrt(v),'-');
xlim([mu-2*sqrt(v),mu+2*sqrt(v)]); ylim([0 1]); xlabel x; ylabel 'cdf'
Compute inverse cdf
x=gx2inv([0.5 0.9],w,k,lambda,m,s)
Distribution of quadratic form of a normal variable
Normal parameters:
v=[2 1; 1 3]; % covariance matrix
Sample normal random vectors:
figure; plot(x(1,:),x(2,:),'.')
Quadratic form = [x1;x2]'*[1 1; 1 1]*[x1;x2] + [-1;0]'*[x1;x2] -1 Compute the quadratic form q for the sample of normal vectors:
q=dot(x,quad.q2*x)+quad.q1'*x+quad.q0;
Get generalized chi-square parameters corresponding to this quadratic form:
[w,k,lambda,m,s]=gx2_params_norm_quad(mu,v,quad)
w = 7.0000
k = 1
lambda = 16.6188
m = -1.3316
s = 0.8452
Compare the sampled and calculated distributions of q:
[f,x]=gx2pdf('full',w,k,lambda,m,s);
histogram(q,'normalization','pdf','displaystyle','stairs')
Compare the sampled and calculated means and variances:
[mu_q,v_q]=gx2stat(w,k,lambda,m,s);
[v_q var(q)]
103 ×
3.3560 3.3671
+.S12 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px 4px 0px 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
Generalized chi-square distribution · Getting started
The generalized chi-square variable is a quadratic form of a normal variable, or equivalently, a linear sum of independent non-central chi-square variables and a normal variable.
For more features and documentation, type:
Bugs/questions/comments to abhranil.das@utexas.edu.
Abhranil Das, Center for Perceptual Systems, University of Texas at Austin
Calculate mean and variance
[mu,v]=gx2stat(w,k,lambda,m,s)
Generate random samples
r=gx2rnd(w,k,lambda,m,s,[1 1e5]);
Calculate pdf and cdf
f=gx2pdf(x,w,k,lambda,m,s)
p=gx2cdf(x,w,k,lambda,m,s,'AbsTol',0,'RelTol',1e-4)
Compare calculated and sampled pdf's
[f,x]=gx2pdf('full',w,k,lambda,m,s);
histogram(r,'normalization','pdf','displaystyle','stairs')
xline(mu,'-',{'\mu \pm \sigma'},'labelorientation','horizontal');
xline(mu-sqrt(v),'-'); xline(mu+sqrt(v),'-');
xlim([mu-2*sqrt(v),mu+2*sqrt(v)]); ylim([0 .015]); ylabel 'pdf'
Compare calculated and sampled cdf's
figure; fplot(@(x) gx2cdf(x,w,k,lambda,m,s));
hold on; histogram(r,'normalization','cdf','displaystyle','stairs')
xline(mu,'-',{'\mu \pm \sigma'},'labelorientation','horizontal');
xline(mu-sqrt(v),'-'); xline(mu+sqrt(v),'-');
xlim([mu-2*sqrt(v),mu+2*sqrt(v)]); ylim([0 1]); xlabel x; ylabel 'cdf'
Compute inverse cdf
x=gx2inv([0.5 0.9],w,k,lambda,m,s)
Distribution of quadratic form of a normal variable
Normal parameters:
v=[2 1; 1 3]; % covariance matrix
Sample normal random vectors:
figure; plot(x(1,:),x(2,:),'.')
Quadratic form = [x1;x2]'*[1 1; 1 1]*[x1;x2] + [-1;0]'*[x1;x2] -1 Compute the quadratic form q for the sample of normal vectors:
q=dot(x,quad.q2*x)+quad.q1'*x+quad.q0;
Get generalized chi-square parameters corresponding to this quadratic form:
[w,k,lambda,m,s]=gx2_params_norm_quad(mu,v,quad)
w = 7.0000
k = 1
lambda = 16.6188
m = -1.3316
s = 0.8452
Compare the sampled and calculated distributions of q:
[f,x]=gx2pdf('full',w,k,lambda,m,s);
histogram(q,'normalization','pdf','displaystyle','stairs')
Compare the sampled and calculated means and variances:
[mu_q,v_q]=gx2stat(w,k,lambda,m,s);
Compare the sampled and calculated probabilities : gx2cdf(50,w,k,lambda,m,s)