diff --git a/Generalized chi-square distribution.mltbx b/Generalized chi-square distribution.mltbx index d685d06..f7667ca 100644 Binary files a/Generalized chi-square distribution.mltbx and b/Generalized chi-square distribution.mltbx differ diff --git a/doc/html/GettingStarted.html b/doc/html/GettingStarted.html index 9b73f77..f110749 100644 --- a/doc/html/GettingStarted.html +++ b/doc/html/GettingStarted.html @@ -37,11 +37,11 @@ .matrixElement .verticalEllipsis,.textElement .verticalEllipsis,.rtcDataTipElement .matrixElement .verticalEllipsis,.rtcDataTipElement .textElement .verticalEllipsis {margin-left: 35px; width: 12px; height: 30px; background-repeat: no-repeat; background-image: url("");} .S10 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; } .S11 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left; } -.S12 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px 4px 0px 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }

Generalized chi-square distribution · Getting started

The generalized chi-square variable is a quadratic form of a normal variable, or equivalently, a linear sum of independent non-central chi-square variables and a normal variable.
For more features and documentation, type:
doc gx2stat
doc gx2rnd
doc gx2cdf
doc gx2cdf_davies
doc gx2cdf_imhof
doc gx2cdf_ruben
doc gx2pdf
doc gx2inv
doc gx2_params_norm_quad
If you use this toolbox, please cite: A method to integrate and classify normal distributions.
Bugs/questions/comments to abhranil.das@utexas.edu.
Abhranil Das, Center for Perceptual Systems, University of Texas at Austin

Calculate mean and variance

% gx2 parameters
w=[1 -10 2];
k=[1 2 3];
lambda=[2 3 7];
m=10;
s=5;
[mu,v]=gx2stat(w,k,lambda,m,s)
mu = -17
v = 1771

Generate random samples

r=gx2rnd(w,k,lambda,m,s,[1 1e5]);

Calculate pdf and cdf

x=[10 25];
f=gx2pdf(x,w,k,lambda,m,s)
f = 1×2
0.0121 0.0088 -
p=gx2cdf(x,w,k,lambda,m,s,'AbsTol',0,'RelTol',1e-4)
p = 1×2
0.7150 0.8790 -

Compare calculated and sampled pdf's

[f,x]=gx2pdf('full',w,k,lambda,m,s);
plot(x,f); hold on
histogram(r,'normalization','pdf','displaystyle','stairs')
xline(mu,'-',{'\mu \pm \sigma'},'labelorientation','horizontal');
xline(mu-sqrt(v),'-'); xline(mu+sqrt(v),'-');
xlim([mu-2*sqrt(v),mu+2*sqrt(v)]); ylim([0 .015]); ylabel 'pdf'

Compare calculated and sampled cdf's

figure; fplot(@(x) gx2cdf(x,w,k,lambda,m,s));
hold on; histogram(r,'normalization','cdf','displaystyle','stairs')
xline(mu,'-',{'\mu \pm \sigma'},'labelorientation','horizontal');
xline(mu-sqrt(v),'-'); xline(mu+sqrt(v),'-');
xlim([mu-2*sqrt(v),mu+2*sqrt(v)]); ylim([0 1]); xlabel x; ylabel 'cdf'

Compute inverse cdf

x=gx2inv([0.5 0.9],w,k,lambda,m,s)
x = 1×2
-8.7657 27.5320 -

Distribution of quadratic form of a normal variable

Normal parameters:
mu=[5;6]; % mean
v=[2 1; 1 3]; % covariance matrix
Sample normal random vectors:
x=mvnrnd(mu,v,1e5)';
figure; plot(x(1,:),x(2,:),'.')
Quadratic form q(\mathbf{x})=(x_1+x_2)^2-x_1-1 = [x1;x2]'*[1 1; 1 1]*[x1;x2] + [-1;0]'*[x1;x2] -1
quad.q2=[1 1; 1 1];
quad.q1=[-1;0];
quad.q0=-1;
Compute the quadratic form q for the sample of normal vectors:
q=dot(x,quad.q2*x)+quad.q1'*x+quad.q0;
Get generalized chi-square parameters corresponding to this quadratic form:
[w,k,lambda,m,s]=gx2_params_norm_quad(mu,v,quad)
w = 7.0000
k = 1
lambda = 16.6188
m = -1.3316
s = 0.8452
Compare the sampled and calculated distributions of q:
[f,x]=gx2pdf('full',w,k,lambda,m,s);
plot(x,f); hold on
histogram(q,'normalization','pdf','displaystyle','stairs')
xlim([0 400])
Compare the sampled and calculated means and variances:
[mu_q,v_q]=gx2stat(w,k,lambda,m,s);
[mu_q mean(q)]
ans = 1×2
122.0000 122.0158 -
[v_q var(q)]
ans = 1×2
103 ×
3.3560 3.3671 +.S12 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px 4px 0px 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }

Generalized chi-square distribution · Getting started

The generalized chi-square variable is a quadratic form of a normal variable, or equivalently, a linear sum of independent non-central chi-square variables and a normal variable.
For more features and documentation, type:
doc gx2stat
doc gx2rnd
doc gx2cdf
doc gx2cdf_davies
doc gx2cdf_imhof
doc gx2cdf_ruben
doc gx2pdf
doc gx2inv
doc gx2_params_norm_quad
If you use this toolbox, please cite: A method to integrate and classify normal distributions.
Bugs/questions/comments to abhranil.das@utexas.edu.
Abhranil Das, Center for Perceptual Systems, University of Texas at Austin

Calculate mean and variance

% gx2 parameters
w=[1 -10 2];
k=[1 2 3];
lambda=[2 3 7];
m=10;
s=5;
[mu,v]=gx2stat(w,k,lambda,m,s)
mu = -17
v = 1771

Generate random samples

r=gx2rnd(w,k,lambda,m,s,[1 1e5]);

Calculate pdf and cdf

x=[10 25];
f=gx2pdf(x,w,k,lambda,m,s)
f = 1×2
0.0121 0.0088 +
p=gx2cdf(x,w,k,lambda,m,s,'AbsTol',0,'RelTol',1e-4)
p = 1×2
0.7150 0.8790 +

Compare calculated and sampled pdf's

[f,x]=gx2pdf('full',w,k,lambda,m,s);
plot(x,f); hold on
histogram(r,'normalization','pdf','displaystyle','stairs')
xline(mu,'-',{'\mu \pm \sigma'},'labelorientation','horizontal');
xline(mu-sqrt(v),'-'); xline(mu+sqrt(v),'-');
xlim([mu-2*sqrt(v),mu+2*sqrt(v)]); ylim([0 .015]); ylabel 'pdf'

Compare calculated and sampled cdf's

figure; fplot(@(x) gx2cdf(x,w,k,lambda,m,s));
hold on; histogram(r,'normalization','cdf','displaystyle','stairs')
xline(mu,'-',{'\mu \pm \sigma'},'labelorientation','horizontal');
xline(mu-sqrt(v),'-'); xline(mu+sqrt(v),'-');
xlim([mu-2*sqrt(v),mu+2*sqrt(v)]); ylim([0 1]); xlabel x; ylabel 'cdf'

Compute inverse cdf

x=gx2inv([0.5 0.9],w,k,lambda,m,s)
x = 1×2
-8.7657 27.5320 +

Distribution of quadratic form of a normal variable

Normal parameters:
mu=[5;6]; % mean
v=[2 1; 1 3]; % covariance matrix
Sample normal random vectors:
x=mvnrnd(mu,v,1e5)';
figure; plot(x(1,:),x(2,:),'.')
Quadratic form q(\mathbf{x})=(x_1+x_2)^2-x_1-1 = [x1;x2]'*[1 1; 1 1]*[x1;x2] + [-1;0]'*[x1;x2] -1
quad.q2=[1 1; 1 1];
quad.q1=[-1;0];
quad.q0=-1;
Compute the quadratic form q for the sample of normal vectors:
q=dot(x,quad.q2*x)+quad.q1'*x+quad.q0;
Get generalized chi-square parameters corresponding to this quadratic form:
[w,k,lambda,m,s]=gx2_params_norm_quad(mu,v,quad)
w = 7.0000
k = 1
lambda = 16.6188
m = -1.3316
s = 0.8452
Compare the sampled and calculated distributions of q:
[f,x]=gx2pdf('full',w,k,lambda,m,s);
plot(x,f); hold on
histogram(q,'normalization','pdf','displaystyle','stairs')
xlim([0 400])
Compare the sampled and calculated means and variances:
[mu_q,v_q]=gx2stat(w,k,lambda,m,s);
[mu_q mean(q)]
ans = 1×2
122.0000 122.0158 +
[v_q var(q)]
ans = 1×2
103 ×
3.3560 3.3671
Compare the sampled and calculated probabilities p(q(x)<50):
mean(q<50)
ans = 0.0839
gx2cdf(50,w,k,lambda,m,s)
ans = 0.0856