- Different Ways to Add Parentheses
Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are +, - and *.
Example 1
Input: "2-1-1".
((2-1)-1) = 0
(2-(1-1)) = 2
Output: [0, 2]
Example 2
Input: "2*3-4*5"
(2*(3-(4*5))) = -34
((2*3)-(4*5)) = -14
((2*(3-4))*5) = -10
(2*((3-4)*5)) = -10
(((2*3)-4)*5) = 10
Output: [-34, -14, -10, -10, 10]
Credits:
Special thanks to @mithmatt for adding this problem and creating all test cases.
my thoughts:
1. peeked answer. recursion
my solution:
********** 72ms
class Solution:
def diffWaysToCompute(self, input):
"""
:type input: str
:rtype: List[int]
"""
if not input:
return []
res = []
for i,c in enumerate(input):
if c in '+-*':
left = self.diffWaysToCompute(input[:i])
right = self.diffWaysToCompute(input[i+1:])
for l in left:
for r in right:
if c == '+':
res.append(l + r)
if c == '-':
res.append(l - r)
if c == '*':
res.append(l * r)
if not res:
return [int(input)]
else:
return sorted(res)
********** 44ms with memorization
class Solution:
def __init__(self):
self.d = {}
def diffWaysToCompute(self, input):
"""
:type input: str
:rtype: List[int]
"""
if not input:
return []
if input in self.d:
return self.d[input]
res = []
for i,c in enumerate(input):
if c in '+-*':
left = self.diffWaysToCompute(input[:i])
right = self.diffWaysToCompute(input[i+1:])
for l in left:
for r in right:
if c == '+':
res.append(l + r)
if c == '-':
res.append(l - r)
if c == '*':
res.append(l * r)
if not res:
self.d[input] = [int(input)]
return [int(input)]
else:
self.d[input] = sorted(res)
return sorted(res)
my comments:
from other ppl's solution:
1. N/A