-
Notifications
You must be signed in to change notification settings - Fork 0
/
log20epochs.txt
39 lines (36 loc) · 3.49 KB
/
log20epochs.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
==== RESTART: C:\CarsModels_Resnet_Pytorch\TrainCarsModels_Resnet_Pytorch.py ===
Warning (from warnings module):
File "C:\Users\Alfonso Blanco\.conda\envs\alfonso1\lib\site-packages\numpy\_distributor_init.py", line 30
warnings.warn("loaded more than 1 DLL from .libs:"
UserWarning: loaded more than 1 DLL from .libs:
C:\Users\Alfonso Blanco\.conda\envs\alfonso1\lib\site-packages\numpy\.libs\libopenblas.FB5AE2TYXYH2IJRDKGDGQ3XBKLKTF43H.gfortran-win_amd64.dll
C:\Users\Alfonso Blanco\.conda\envs\alfonso1\lib\site-packages\numpy\.libs\libopenblas64__v0.3.21-gcc_10_3_0.dll
Warning (from warnings module):
File "C:\Users\Alfonso Blanco\AppData\Roaming\Python\Python39\site-packages\torchvision\models\_utils.py", line 208
warnings.warn(
UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
Warning (from warnings module):
File "C:\Users\Alfonso Blanco\AppData\Roaming\Python\Python39\site-packages\torchvision\models\_utils.py", line 223
warnings.warn(msg)
UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet50_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet50_Weights.DEFAULT` to get the most up-to-date weights.
No. epochs: 2, Training Loss: 0.122 Valid Loss: 4.928 Valid Accuracy: 0.033
No. epochs: 3, Training Loss: 0.183 Valid Loss: 4.046 Valid Accuracy: 0.118
No. epochs: 4, Training Loss: 0.211 Valid Loss: 3.313 Valid Accuracy: 0.237
No. epochs: 5, Training Loss: 0.19 Valid Loss: 2.726 Valid Accuracy: 0.353
No. epochs: 6, Training Loss: 0.179 Valid Loss: 2.113 Valid Accuracy: 0.465
No. epochs: 7, Training Loss: 0.146 Valid Loss: 1.873 Valid Accuracy: 0.517
No. epochs: 8, Training Loss: 0.121 Valid Loss: 1.624 Valid Accuracy: 0.589
No. epochs: 9, Training Loss: 0.098 Valid Loss: 1.453 Valid Accuracy: 0.621
No. epochs: 10, Training Loss: 0.081 Valid Loss: 1.405 Valid Accuracy: 0.621
No. epochs: 11, Training Loss: 0.062 Valid Loss: 1.061 Valid Accuracy: 0.726
No. epochs: 12, Training Loss: 0.066 Valid Loss: 1.03 Valid Accuracy: 0.733
No. epochs: 13, Training Loss: 0.064 Valid Loss: 1.008 Valid Accuracy: 0.738
No. epochs: 14, Training Loss: 0.067 Valid Loss: 1.016 Valid Accuracy: 0.731
No. epochs: 15, Training Loss: 0.07 Valid Loss: 1.003 Valid Accuracy: 0.735
No. epochs: 16, Training Loss: 0.076 Valid Loss: 1.005 Valid Accuracy: 0.741
No. epochs: 17, Training Loss: 0.077 Valid Loss: 1.001 Valid Accuracy: 0.74
No. epochs: 18, Training Loss: 0.083 Valid Loss: 0.997 Valid Accuracy: 0.74
No. epochs: 19, Training Loss: 0.09 Valid Loss: 1.014 Valid Accuracy: 0.729
No. epochs: 20, Training Loss: 0.092 Valid Loss: 0.985 Valid Accuracy: 0.745
Test accuracy of model: 69.89%
>>>