-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathprocess.cpp
436 lines (369 loc) · 17.1 KB
/
process.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
Fakeroot Next Generation - run command with fake root privileges
This program is copyrighted. Copyright information is available at the
AUTHORS file at the root of the source tree for the fakeroot-ng project
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <errno.h>
#include <limits.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
#include "syscalls.h"
#include "arch/platform.h"
#include "process.h"
#include "chroot.h"
// XXX
// Not implemented functions:
// acct
bool sys_fork( int sc_num, pid_t pid, pid_state *state )
{
if( state->state==pid_state::NONE ) {
// XXX It is not clear whether we should lock the shared memory while in this call.
// PROC_MEM_LOCK();
if( ptlib_fork_enter( pid, sc_num, state->mem->get_shared(), state->mem->get_loc(), state->saved_state,
state->context_state+1 ) )
{
state->state=pid_state::RETURN;
} else {
state->state=pid_state::REDIRECT2;
}
state->context_state[0]=0;
} else if( state->state==pid_state::RETURN || state->state==pid_state::REDIRECT2 ) {
pid_t newpid;
if( ptlib_fork_exit( pid, &newpid, state->saved_state, state->context_state+1 ) && newpid>0 ) {
handle_new_process( pid, newpid );
}
state->state=pid_state::NONE;
}
return true;
}
bool sys_vfork( int sc_num, pid_t pid, pid_state *state )
{
if( state->state==pid_state::NONE ) {
sys_fork( sc_num, pid, state );
state->context_state[0]=NEW_PROCESS_SAME_VM;
// XXX Is this a Linux specific thing?
} else {
sys_fork( sc_num, pid, state );
}
return true;
}
#ifdef SYS_clone
bool sys_clone( int sc_num, pid_t pid, pid_state *state )
{
if( state->state==pid_state::NONE ) {
state->state=pid_state::RETURN;
// Need to mark context_state[0] based on the type of new process being created
state->context_state[0]=0;
int_ptr flags=ptlib_get_argument( pid, 1 );
if( (flags&(CLONE_PARENT|CLONE_THREAD))!=0 )
state->context_state[0]|=NEW_PROCESS_SAME_PARENT;
if( (flags&CLONE_FS)!=0 )
state->context_state[0]|=NEW_PROCESS_SAME_ROOT;
if( (flags&CLONE_FILES)!=0 )
state->context_state[0]|=NEW_PROCESS_SAME_FD;
if( (flags&CLONE_VM)!=0 )
state->context_state[0]|=NEW_PROCESS_SAME_VM;
if( (flags&CLONE_PTRACE)!=0 )
state->context_state[0]|=NEW_PROCESS_SAME_DEBUGGER;
dlog(PID_F": clone called with flags %lx\n", pid, (unsigned long)flags );
// Whatever it originally was, add a CLONE_PTRACE to the flags so that we remain in control
flags|=CLONE_PTRACE;
flags&=~CLONE_UNTRACED; // Reset the UNTRACED flag
ptlib_set_argument( pid, 1, flags );
} else if( state->state==pid_state::RETURN ) {
// Was the call successful?
state->state=pid_state::NONE;
if( ptlib_success( pid, state->orig_sc ) ) {
pid_t newpid=(pid_t)ptlib_get_retval( pid );
dlog(PID_F": clone succeeded, new process " PID_F "\n", pid, newpid );
handle_new_process( pid, newpid );
} else {
dlog(PID_F": clone failed: %s\n", pid, strerror( ptlib_get_error( pid, state->orig_sc ) ) );
}
}
return true;
}
#endif // SYS_CLONE
// Function interface is different - returns an extra bool to signify whether to send a trap after the call
// context_state[0] is state machine:
// 0 - just returned from execve
// 1 - got a SIGTRAP after execve
// if context_state[1] is not 0, force error on syscall
bool sys_execve( int sc_num, pid_t pid, pid_state *state, bool &trap_after_call )
{
trap_after_call=false;
if( state->state==pid_state::NONE ) {
PROC_MEM_LOCK();
state->context_state[1]=0; // Don't force error by default
if( log_level>0 ) {
char cmd[PATH_MAX];
ptlib_get_string( pid, ptlib_get_argument( pid, 1 ), cmd, sizeof(cmd) );
dlog("execve: " PID_F " calling execve for executing %s\n", pid, cmd );
dlog(NULL);
}
if( chroot_is_chrooted( state ) ) {
if( !chroot_translate_param( pid, state, 1, true, true ) ) {
// We had an error translating the file name - pass the error on
state->context_state[1]=errno;
ptlib_set_syscall( pid, PREF_NOP );
// REDIRECT2 is set anyways
}
}
// On some platforms "execve" returns, when successful, with SYS_restart_syscall or some such thing
state->state=pid_state::REDIRECT2;
state->context_state[0]=0;
} else if( state->state==pid_state::REDIRECT2 ) {
if( state->context_state[0]==0 ) {
// Execve returned
state->state=pid_state::NONE;
if( ptlib_success( pid, sc_num ) && state->context_state[1]==0 ) {
dlog("execve: " PID_F " successfully execed a new command\n", pid );
// All memory allocations performed before the exec are now null and void
state->mem=ref_count<pid_state::process_memory>(new pid_state::process_memory);
#if PTLIB_TRAP_AFTER_EXEC
// The platform sends a SIGTRAP to the process after a successful execve, which results in us thinking it was
// a syscall. We need to absorb it
state->state=pid_state::REDIRECT2;
state->context_state[0]=1;
if( state->trace_mode==TRACE_SYSCALL ) {
// We are not in the "NONE" state, but the syscall is over. Tell parent to trap
trap_after_call=true;
}
#endif
} else if( state->context_state[1]!=0 ) {
dlog("execve: " PID_F " chroot translation forced error on us: %s\n", pid, strerror(state->context_state[1]) );
ptlib_set_error( pid, state->orig_sc, state->context_state[1] );
} else {
dlog("execve: " PID_F " failed with error %s\n", pid, strerror(ptlib_get_error(pid, sc_num)) );
}
} else {
state->state=pid_state::NONE;
dlog("execve: " PID_F " absorbed dummy SIGTRAP after successful execve\n", pid );
// If the trace mode is not SYSCALL, the post handling will not generate a TRACE. If PTLIB_TRAP_AFTER_EXEC is set,
// a trace is required, however, even if not in TRACE_SYSCALL
trap_after_call=true;
}
}
return true;
}
bool sys_sigreturn( int sc_num, pid_t pid, pid_state *state )
{
// This is not a function call. In particular, this "not function call" may wreak haevoc in our state keeping, and
// thus the special handling
if( state->state==pid_state::NONE ) {
// Upon syscall exit, at least on Linux, the syscall is "-1"
state->state=pid_state::REDIRECT2;
} else if( state->state==pid_state::REDIRECT2 ) {
state->state=pid_state::NONE;
}
return true;
}
bool sys_setsid( int sc_num, pid_t pid, pid_state *state )
{
// We do not do any actual manipulation on the syscall. We just keep track over the process' session ID
if( state->state==pid_state::NONE ) {
state->state=pid_state::RETURN;
} else if( state->state==pid_state::RETURN ) {
state->state=pid_state::NONE;
if( ptlib_success( pid, sc_num ) ) {
state->session_id=pid;
}
}
return true;
}
// This call needs to be emulated under one of two conditions:
// 1. Platform does not support "wait" by parent on a debugged child (PTLIB_PARENT_CAN_WAIT=0)
// 2. The parent is a debugger (we are emulating the entire ptrace interface)
//
// Of course, with PTRACE_TRACEME, it is possible that the process not have a debugee when it
// starts the wait, but does have one by the time wait should return. We therefor emulate the
// entire system call, always :-(
static bool real_wait4( int sc_num, pid_t pid, pid_state *state, pid_t param1, int *param2, int param3, void *param4 )
{
if( state->state==pid_state::NONE ) {
state->context_state[0]=param1; // pid
state->context_state[1]=(int_ptr)param2; // status
state->context_state[2]=param3; // options
state->context_state[3]=(int_ptr)param4; // rusage
dlog("wait4: %d num debugees: %d num children: %d, queue %s\n", pid, state->num_debugees, state->num_children,
state->waiting_signals.empty()?"is empty":"has signals" );
// Test whether the (emulated) call should fail
// XXX This is nowhere near the exhustive tests we need to do. We only aim to emulate strace and ourselves at this point in time
if( state->num_children!=0 || state->num_debugees!=0 || !state->waiting_signals.empty() ) {
// Only wait if there was no error
state->state=pid_state::WAITING;
} else {
// Set an ECHILD return code
state->state=pid_state::REDIRECT2;
ptlib_set_syscall( pid, PREF_NOP ); // NOP call
state->context_state[0]=-ECHILD;
}
} else if( state->state==pid_state::REDIRECT2 ) {
// We may get here under two conditions.
// Either the wait was performed by us and a NOP was carried out, in which case the syscall is going to be PREF_NOP
// and context_state[0] contains the desired return code (negative for error)
// Or
// A function substancially similar to wait was carried out, in which case context_state[0] contains a backup of the original
// content of the fourth parameter register, which may have not been used by the original syscall if it was not wait4
if( sc_num==PREF_NOP ) {
// Performed NOP - set return codes
if( ((long)state->context_state[0])>=0 )
ptlib_set_retval( pid, state->context_state[0] );
else
ptlib_set_error( pid, state->orig_sc, -state->context_state[0] );
ptlib_set_syscall( pid, state->orig_sc );
} else {
// If an actual wait syscall was carried out, we may need to restore the original content of argument 4
ptlib_set_argument( pid, 4, state->context_state[0] );
}
ptlib_set_syscall( pid, state->orig_sc );
state->state=pid_state::NONE;
}
if( state->state==pid_state::WAITING ) {
if( !state->waiting_signals.empty() ) {
// Let's see what was asked for
pid_t wait_pid=(pid_t)state->context_state[0];
std::list<pid_state::wait_state>::iterator child=state->waiting_signals.begin();
assert(child!=state->waiting_signals.end());
pid_state *child_state=NULL;
if( wait_pid<-1 ) {
// We are looking for process with session id= -pid
child_state=lookup_state(child->pid());
while( child!=state->waiting_signals.end() && child_state->session_id!=-wait_pid )
{
if( (++child)!=state->waiting_signals.end() )
{
child_state=lookup_state(child->pid());
assert(child_state!=NULL);
}
}
} else if( wait_pid==-1 ) {
// Wait for anything. Just leave child as it is
} else if( wait_pid==0 ) {
// Wait for session_id==parent's
child_state=lookup_state(child->pid());
while( child!=state->waiting_signals.end() && child_state->session_id!=state->session_id )
{
if( (++child)!=state->waiting_signals.end() )
{
child_state=lookup_state(child->pid());
assert(child_state!=NULL);
}
}
} else {
// Wait for exact match
while( child!=state->waiting_signals.end() && child->pid()!=wait_pid )
++child;
}
if( child!=state->waiting_signals.end() ) {
// We have what to report
if( child_state==NULL ) {
child_state=lookup_state(child->pid());
assert(child_state!=NULL);
}
assert( child_state->state!=pid_state::INIT );
if( child_state->state==pid_state::ZOMBIE ) {
// We can dispense with the pid entry
delete_state(child->pid());
dlog("%s: Child " PID_F " removed from process table\n", __func__, child->pid() );
child_state=NULL;
}
// allow the syscall to return
// Fill in the rusage
if( ((void *)state->context_state[3])!=NULL )
ptlib_set_mem( pid, &child->usage(), state->context_state[3], sizeof(child->usage()) );
// Is this a report about a terminated program?
if( !child->debugonly() )
{
// If the parent never carried out the actual "wait", the child will become a zombie
// We turn the syscall into a waitpid with the child's pid explicitly given
#ifdef SYS_wait4
ptlib_set_syscall( pid, SYS_wait4 );
#else
ptlib_set_syscall( pid, SYS_waitpid );
#endif
state->saved_state[0]=(void *)ptlib_get_argument( pid, 4 ); // Save the fourth argument
ptlib_set_argument( pid, 1, child->pid() );
ptlib_set_argument( pid, 2, state->context_state[1] );
ptlib_set_argument( pid, 3, state->context_state[2] );
ptlib_set_argument( pid, 4, state->context_state[3] );
} else {
// We need to explicitly set all the arguments
if( ((void *)state->context_state[1])!=NULL )
ptlib_set_mem( pid, &child->status(), state->context_state[1], sizeof(child->status()) );
ptlib_set_syscall( pid, PREF_NOP );
state->context_state[0]=child->pid();
}
state->waiting_signals.erase( child );
state->state=pid_state::REDIRECT2;
} else {
dlog("wait4: " PID_F " hanged in wait for %d\n", pid, wait_pid );
}
}
if( state->state==pid_state::WAITING && (state->context_state[2]&WNOHANG)!=0 ) {
// Client asked never to hang
state->state=pid_state::REDIRECT2;
ptlib_set_syscall( pid, PREF_NOP );
state->context_state[0]=0;
}
}
return state->state!=pid_state::WAITING;
}
bool sys_wait4( int sc_num, pid_t pid, pid_state *state )
{
if( state->state==pid_state::NONE ) {
pid_t param1=(pid_t)ptlib_get_argument(pid, 1); // pid
int *param2=(int *)ptlib_get_argument(pid, 2); // status
int param3=ptlib_get_argument(pid, 3); // options
void *param4=(void *)ptlib_get_argument(pid, 4); // rusage
return real_wait4( sc_num, pid, state, param1, param2, param3, param4 );
} else {
return real_wait4( sc_num, pid, state, 0, NULL, 0, NULL );
}
}
// We just set the variables and let wait4 handle our case
bool sys_waitpid( int sc_num, pid_t pid, pid_state *state )
{
if( state->state==pid_state::NONE ) {
pid_t param1=ptlib_get_argument(pid, 1); // pid
int *param2=(int *)ptlib_get_argument(pid, 2); // status
int param3=ptlib_get_argument(pid, 3); // options
return real_wait4( sc_num, pid, state, param1, param2, param3, NULL );
} else {
return real_wait4( sc_num, pid, state, 0, NULL, 0, NULL );
}
}
// We want to prevent the process from killing us
bool sys_kill( int sc_num, pid_t pid, pid_state *state )
{
if( state->state==pid_state::NONE ) {
state->state=pid_state::RETURN;
if( ((pid_t)ptlib_get_argument( pid, 1 ))==getpid() ) {
// Process tried to send us a signal. Can't allow that
state->state=pid_state::REDIRECT2;
ptlib_set_syscall( pid, PREF_NOP);
}
} else if( state->state==pid_state::RETURN ) {
state->state=pid_state::NONE;
} else if( state->state==pid_state::REDIRECT2 ) {
state->state=pid_state::NONE;
ptlib_set_error( pid, state->orig_sc, EPERM );
}
return true;
}