Skip to content

Latest commit

 

History

History
303 lines (228 loc) · 8.05 KB

example.md

File metadata and controls

303 lines (228 loc) · 8.05 KB
output
html_document
fig_height fig_width keep_md
3
3.5
true

See the Rmd file here: https://raw.githubusercontent.com/ralfer/apa_format_and_misc/master/example/example.Rmd

library(apastats)
load.libs(c('data.table','knitr'))
## Warning: package 'data.table' was built under R version 3.4.4
## Warning: package 'knitr' was built under R version 3.4.3
opts_chunk$set(message=F)
t_res<-t.test(rnorm(20, mean = 10, sd=2))

t_res
## 
## 	One Sample t-test
## 
## data:  rnorm(20, mean = 10, sd = 2)
## t = 32.338, df = 19, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##   9.299656 10.586773
## sample estimates:
## mean of x 
##  9.943215

One sample Student's t-test demonstrated that X significantly higher than zero, t(19.0) = 32.34, p < .001.

data("sleep")
describe.mean.and.t(sleep$extra, sleep$group, which.mean = 3, paired=T)
## [1] "_M_ = 0.75 [-0.25, 1.78] vs. _M_ = 2.33 [1.21, 3.49], _t_(9.0) = -4.06, _p_ = .003"

Student's t-test showed that increase in hours of sleep compared to control was lower in group 1 than in group 2, M = 0.75 [-0.27, 1.73] vs. M = 2.33 [1.22, 3.45], t(9.0) = -4.06, p = .003.

require(MASS)
## Warning: package 'MASS' was built under R version 3.4.4
glm_res<-glm(Freq ~ (Age+Sex)*Survived, family = poisson, data = data.frame(Titanic))

describe.glm(glm_res)
##                           B   SE   Stat      p                   eff
## (Intercept)            2.48 0.14  17.83 < .001           (Intercept)
## AgeAdult               3.32 0.14  23.52 < .001              AgeAdult
## SexFemale             -2.38 0.09 -25.58 < .001             SexFemale
## SurvivedYes           -0.48 0.20  -2.46 = .014           SurvivedYes
## AgeAdult:SurvivedYes  -0.88 0.20  -4.45 < .001  AgeAdult:SurvivedYes
## SexFemale:SurvivedYes  2.32 0.12  19.38 < .001 SexFemale:SurvivedYes
##                                            str
## (Intercept)           _Z_ =  17.83, _p_ < .001
## AgeAdult              _Z_ =  23.52, _p_ < .001
## SexFemale             _Z_ = -25.58, _p_ < .001
## SurvivedYes           _Z_ =  -2.46, _p_ = .014
## AgeAdult:SurvivedYes  _Z_ =  -4.45, _p_ < .001
## SexFemale:SurvivedYes _Z_ =  19.38, _p_ < .001
lm_res<-lm(Postwt ~ Prewt + Treat + offset(Prewt), anorexia)
describe.glm(lm_res)
##                 B    SE  Stat      p         eff                     str
## (Intercept) 49.77 13.39  3.72 < .001 (Intercept) _t_ =  3.72, _p_ < .001
## Prewt       -0.57  0.16 -3.51 < .001       Prewt _t_ = -3.51, _p_ < .001
## TreatCont   -4.10  1.89 -2.16 = .034   TreatCont _t_ = -2.16, _p_ = .034
## TreatFT      4.56  2.13  2.14 = .036     TreatFT _t_ =  2.14, _p_ = .036
describe.glm(glm_res, "SexFemale:SurvivedYes", dtype=1)
## [1] "_Z_ =  19.38, _p_ < .001"
describe.glm(glm_res, "SexFemale:SurvivedYes", dtype=2)
## [1] "_B_ = 2.32 (0.12), _p_ < .001"
describe.glm(glm_res, "SexFemale:SurvivedYes", dtype=3)
## [1] "_B_ = 2.32, _SE_ = 0.12,  _Z_ =  19.38, _p_ < .001"
describe.glm(glm_res, "SexFemale:SurvivedYes", dtype=3, test.df=T)
## [1] "_B_ = 2.32, _SE_ = 0.12,  _Z_(26) =  19.38, _p_ < .001"

Adults had lower chances of survival on Titanic than children, Z = -4.45, p < .001, and women had higher chances than men, B = 2.32, SE = 0.12, Z = 19.38, p < .001.

require(ez)
data(ANT)

rt_anova = ezANOVA(
    data = ANT[ANT$error==0,]
    , dv = rt
    , wid = subnum
    , within = .(cue,flank)
    , between = group
)
## Warning: Collapsing data to cell means. *IF* the requested effects are a
## subset of the full design, you must use the "within_full" argument, else
## results may be inaccurate.
rt_anova
## $ANOVA
##            Effect DFn DFd           F            p p<.05        ges
## 2           group   1  18   18.430592 4.377562e-04     * 0.07633358
## 3             cue   3  54  516.605213 1.005518e-39     * 0.89662286
## 5           flank   2  36 1350.598810 1.386546e-34     * 0.92710583
## 4       group:cue   3  54    2.553236 6.497492e-02       0.04110445
## 6     group:flank   2  36    8.768499 7.900829e-04     * 0.07627434
## 7       cue:flank   6 108    5.193357 9.938494e-05     * 0.11436699
## 8 group:cue:flank   6 108    6.377225 9.012515e-06     * 0.13686958
## 
## $`Mauchly's Test for Sphericity`
##            Effect         W         p p<.05
## 3             cue 0.7828347 0.5366835      
## 4       group:cue 0.7828347 0.5366835      
## 5           flank 0.8812738 0.3415406      
## 6     group:flank 0.8812738 0.3415406      
## 7       cue:flank 0.1737053 0.1254796      
## 8 group:cue:flank 0.1737053 0.1254796      
## 
## $`Sphericity Corrections`
##            Effect       GGe        p[GG] p[GG]<.05       HFe        p[HF]
## 3             cue 0.8652559 1.115029e-34         * 1.0239520 1.005518e-39
## 4       group:cue 0.8652559 7.472046e-02           1.0239520 6.497492e-02
## 5           flank 0.8938738 3.763312e-31         * 0.9858964 3.964046e-34
## 6     group:flank 0.8938738 1.297752e-03         * 0.9858964 8.438369e-04
## 7       cue:flank 0.6022111 1.546166e-03         * 0.7721473 4.745714e-04
## 8 group:cue:flank 0.6022111 3.424499e-04         * 0.7721473 7.170939e-05
##   p[HF]<.05
## 3         *
## 4          
## 5         *
## 6         *
## 7         *
## 8         *

Repeated measures ANOVA demonstrated a significant influence of cue on RT, F(3, 54) = 516.61, p < .001, $\eta$^2^G = .90.

Plotting pointrange plots

You can plot within-subject CIs with the help of summarySEwithin from http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_%28ggplot2%29/

require(nlme)
## Warning: package 'nlme' was built under R version 3.4.4
require(gridExtra)
## Warning: package 'gridExtra' was built under R version 3.4.2
data(ergoStool)

p1<-plot.pointrange(ergoStool, aes(x=Type, y=effort))+ggtitle('Usual CIs')
## Warning: package 'ggplot2' was built under R version 3.4.3
p2<-plot.pointrange(ergoStool, aes(x=Type, y=effort), within_subj=T, wid='Subject')+ggtitle('Within-subject CIs')
grid.arrange(p1, p2, ncol=2)

Showing log-transformed data back untransformed

Sometimes it is useful to analyze data log-transformed (e.g., in reaction time analyses), but to show it untransformed. scale_y_exp comes in handy.

library(scales)
temp <- tempfile()
download.file("http://cogjournal.org/2/1/files/ChetverikovRJCS2015SOMdata.zip",temp)
faces <- data.table(read.csv(unz(temp, "faces_data.csv"), header = T))
unlink(temp)

faces[,logAT:=log(answerTime)]

p0<-plot.pointrange(faces[correct==1, ], aes(x=user_gender, color=stim_gender, y=logAT), wid='uid')+ylab('Log RT')

p0

p1<-plot.pointrange(faces[correct==1, ], aes(x=user_gender, color=stim_gender, y=logAT), wid='uid')+scale_y_exp(digits=2)+labs(x="Participant's gender", color="Face Gender", y='Untransformed RT')

p1

Sharing legend and axis title between plots

It is not very easy to share legend or axis title between plots. I modified a function from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs to make it easier.

p2<-plot.pointrange(faces, aes(x=user_gender, color=stim_gender, y=correct), wid='uid')+labs(x="Participant's gender", color="Face Gender" ,y='Accuracy')

p2

grid_arrange_shared_legend(p1 + theme(legend.direction="horizontal"),p2)

grid_arrange_shared_legend(p1, p2, stack = 'horizontal')

grid_arrange_shared_legend(p1, p2, stack = 'horizontal', one_sub = T)