forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 8
/
p2p_compactblocks.py
executable file
·968 lines (800 loc) · 42.4 KB
/
p2p_compactblocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
#!/usr/bin/env python3
# Copyright (c) 2016-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test compact blocks (BIP 152)."""
import random
from test_framework.blocktools import (
COINBASE_MATURITY,
NORMAL_GBT_REQUEST_PARAMS,
add_witness_commitment,
create_block,
)
from test_framework.messages import (
BlockTransactions,
BlockTransactionsRequest,
CBlock,
CBlockHeader,
CInv,
COutPoint,
CTransaction,
CTxIn,
CTxInWitness,
CTxOut,
from_hex,
HeaderAndShortIDs,
MSG_BLOCK,
MSG_CMPCT_BLOCK,
MSG_WITNESS_FLAG,
P2PHeaderAndShortIDs,
PrefilledTransaction,
calculate_shortid,
msg_block,
msg_blocktxn,
msg_cmpctblock,
msg_getblocktxn,
msg_getdata,
msg_getheaders,
msg_headers,
msg_inv,
msg_no_witness_block,
msg_no_witness_blocktxn,
msg_sendcmpct,
msg_sendheaders,
msg_tx,
ser_uint256,
tx_from_hex,
)
from test_framework.p2p import (
P2PInterface,
p2p_lock,
)
from test_framework.script import (
CScript,
OP_DROP,
OP_TRUE,
)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_equal,
softfork_active,
)
from test_framework.wallet import MiniWallet
# TestP2PConn: A peer we use to send messages to bitcoind, and store responses.
class TestP2PConn(P2PInterface):
def __init__(self):
super().__init__()
self.last_sendcmpct = []
self.block_announced = False
# Store the hashes of blocks we've seen announced.
# This is for synchronizing the p2p message traffic,
# so we can eg wait until a particular block is announced.
self.announced_blockhashes = set()
def on_sendcmpct(self, message):
self.last_sendcmpct.append(message)
def on_cmpctblock(self, message):
self.block_announced = True
self.last_message["cmpctblock"].header_and_shortids.header.calc_sha256()
self.announced_blockhashes.add(self.last_message["cmpctblock"].header_and_shortids.header.sha256)
def on_headers(self, message):
self.block_announced = True
for x in self.last_message["headers"].headers:
x.calc_sha256()
self.announced_blockhashes.add(x.sha256)
def on_inv(self, message):
for x in self.last_message["inv"].inv:
if x.type == MSG_BLOCK:
self.block_announced = True
self.announced_blockhashes.add(x.hash)
# Requires caller to hold p2p_lock
def received_block_announcement(self):
return self.block_announced
def clear_block_announcement(self):
with p2p_lock:
self.block_announced = False
self.last_message.pop("inv", None)
self.last_message.pop("headers", None)
self.last_message.pop("cmpctblock", None)
def clear_getblocktxn(self):
with p2p_lock:
self.last_message.pop("getblocktxn", None)
def get_headers(self, locator, hashstop):
msg = msg_getheaders()
msg.locator.vHave = locator
msg.hashstop = hashstop
self.send_message(msg)
def send_header_for_blocks(self, new_blocks):
headers_message = msg_headers()
headers_message.headers = [CBlockHeader(b) for b in new_blocks]
self.send_message(headers_message)
def request_headers_and_sync(self, locator, hashstop=0):
self.clear_block_announcement()
self.get_headers(locator, hashstop)
self.wait_until(self.received_block_announcement, timeout=30)
self.clear_block_announcement()
# Block until a block announcement for a particular block hash is
# received.
def wait_for_block_announcement(self, block_hash, timeout=30):
def received_hash():
return (block_hash in self.announced_blockhashes)
self.wait_until(received_hash, timeout=timeout)
def send_await_disconnect(self, message, timeout=30):
"""Sends a message to the node and wait for disconnect.
This is used when we want to send a message into the node that we expect
will get us disconnected, eg an invalid block."""
self.send_message(message)
self.wait_for_disconnect(timeout=timeout)
class CompactBlocksTest(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 1
self.extra_args = [[
"-acceptnonstdtxn=1",
]]
self.utxos = []
def build_block_on_tip(self, node):
block = create_block(tmpl=node.getblocktemplate(NORMAL_GBT_REQUEST_PARAMS))
block.solve()
return block
# Create 10 more anyone-can-spend utxo's for testing.
def make_utxos(self):
block = self.build_block_on_tip(self.nodes[0])
self.segwit_node.send_and_ping(msg_no_witness_block(block))
assert int(self.nodes[0].getbestblockhash(), 16) == block.sha256
self.generate(self.wallet, COINBASE_MATURITY)
total_value = block.vtx[0].vout[0].nValue
out_value = total_value // 10
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(block.vtx[0].sha256, 0), b''))
for _ in range(10):
tx.vout.append(CTxOut(out_value, CScript([OP_TRUE])))
tx.rehash()
block2 = self.build_block_on_tip(self.nodes[0])
block2.vtx.append(tx)
block2.hashMerkleRoot = block2.calc_merkle_root()
block2.solve()
self.segwit_node.send_and_ping(msg_no_witness_block(block2))
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block2.sha256)
self.utxos.extend([[tx.sha256, i, out_value] for i in range(10)])
# Test "sendcmpct" (between peers preferring the same version):
# - No compact block announcements unless sendcmpct is sent.
# - If sendcmpct is sent with version = 1, the message is ignored.
# - If sendcmpct is sent with version > 2, the message is ignored.
# - If sendcmpct is sent with boolean 0, then block announcements are not
# made with compact blocks.
# - If sendcmpct is then sent with boolean 1, then new block announcements
# are made with compact blocks.
def test_sendcmpct(self, test_node):
node = self.nodes[0]
# Make sure we get a SENDCMPCT message from our peer
def received_sendcmpct():
return (len(test_node.last_sendcmpct) > 0)
test_node.wait_until(received_sendcmpct, timeout=30)
with p2p_lock:
# Check that version 2 is received.
assert_equal(test_node.last_sendcmpct[0].version, 2)
test_node.last_sendcmpct = []
tip = int(node.getbestblockhash(), 16)
def check_announcement_of_new_block(node, peer, predicate):
peer.clear_block_announcement()
block_hash = int(self.generate(node, 1)[0], 16)
peer.wait_for_block_announcement(block_hash, timeout=30)
assert peer.block_announced
with p2p_lock:
assert predicate(peer), (
"block_hash={!r}, cmpctblock={!r}, inv={!r}".format(
block_hash, peer.last_message.get("cmpctblock", None), peer.last_message.get("inv", None)))
# We shouldn't get any block announcements via cmpctblock yet.
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)
# Try one more time, this time after requesting headers.
test_node.request_headers_and_sync(locator=[tip])
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "inv" in p.last_message)
# Test a few ways of using sendcmpct that should NOT
# result in compact block announcements.
# Before each test, sync the headers chain.
test_node.request_headers_and_sync(locator=[tip])
# Now try a SENDCMPCT message with too-low version
test_node.send_and_ping(msg_sendcmpct(announce=True, version=1))
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)
# Headers sync before next test.
test_node.request_headers_and_sync(locator=[tip])
# Now try a SENDCMPCT message with too-high version
test_node.send_and_ping(msg_sendcmpct(announce=True, version=3))
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)
# Headers sync before next test.
test_node.request_headers_and_sync(locator=[tip])
# Now try a SENDCMPCT message with valid version, but announce=False
test_node.send_and_ping(msg_sendcmpct(announce=False, version=2))
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)
# Headers sync before next test.
test_node.request_headers_and_sync(locator=[tip])
# Finally, try a SENDCMPCT message with announce=True
test_node.send_and_ping(msg_sendcmpct(announce=True, version=2))
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)
# Try one more time (no headers sync should be needed!)
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)
# Try one more time, after turning on sendheaders
test_node.send_and_ping(msg_sendheaders())
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)
# Try one more time, after sending a version=1, announce=false message.
test_node.send_and_ping(msg_sendcmpct(announce=False, version=1))
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)
# Now turn off announcements
test_node.send_and_ping(msg_sendcmpct(announce=False, version=2))
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "headers" in p.last_message)
# This test actually causes bitcoind to (reasonably!) disconnect us, so do this last.
def test_invalid_cmpctblock_message(self):
self.generate(self.nodes[0], COINBASE_MATURITY + 1)
block = self.build_block_on_tip(self.nodes[0])
cmpct_block = P2PHeaderAndShortIDs()
cmpct_block.header = CBlockHeader(block)
cmpct_block.prefilled_txn_length = 1
# This index will be too high
prefilled_txn = PrefilledTransaction(1, block.vtx[0])
cmpct_block.prefilled_txn = [prefilled_txn]
self.segwit_node.send_await_disconnect(msg_cmpctblock(cmpct_block))
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.hashPrevBlock)
# Compare the generated shortids to what we expect based on BIP 152, given
# bitcoind's choice of nonce.
def test_compactblock_construction(self, test_node):
node = self.nodes[0]
# Generate a bunch of transactions.
self.generate(node, COINBASE_MATURITY + 1)
num_transactions = 25
segwit_tx_generated = False
for _ in range(num_transactions):
hex_tx = self.wallet.send_self_transfer(from_node=self.nodes[0])['hex']
tx = tx_from_hex(hex_tx)
if not tx.wit.is_null():
segwit_tx_generated = True
assert segwit_tx_generated # check that our test is not broken
# Wait until we've seen the block announcement for the resulting tip
tip = int(node.getbestblockhash(), 16)
test_node.wait_for_block_announcement(tip)
# Make sure we will receive a fast-announce compact block
self.request_cb_announcements(test_node)
# Now mine a block, and look at the resulting compact block.
test_node.clear_block_announcement()
block_hash = int(self.generate(node, 1)[0], 16)
# Store the raw block in our internal format.
block = from_hex(CBlock(), node.getblock("%064x" % block_hash, False))
for tx in block.vtx:
tx.calc_sha256()
block.rehash()
# Wait until the block was announced (via compact blocks)
test_node.wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30)
# Now fetch and check the compact block
header_and_shortids = None
with p2p_lock:
# Convert the on-the-wire representation to absolute indexes
header_and_shortids = HeaderAndShortIDs(test_node.last_message["cmpctblock"].header_and_shortids)
self.check_compactblock_construction_from_block(header_and_shortids, block_hash, block)
# Now fetch the compact block using a normal non-announce getdata
test_node.clear_block_announcement()
inv = CInv(MSG_CMPCT_BLOCK, block_hash)
test_node.send_message(msg_getdata([inv]))
test_node.wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30)
# Now fetch and check the compact block
header_and_shortids = None
with p2p_lock:
# Convert the on-the-wire representation to absolute indexes
header_and_shortids = HeaderAndShortIDs(test_node.last_message["cmpctblock"].header_and_shortids)
self.check_compactblock_construction_from_block(header_and_shortids, block_hash, block)
def check_compactblock_construction_from_block(self, header_and_shortids, block_hash, block):
# Check that we got the right block!
header_and_shortids.header.calc_sha256()
assert_equal(header_and_shortids.header.sha256, block_hash)
# Make sure the prefilled_txn appears to have included the coinbase
assert len(header_and_shortids.prefilled_txn) >= 1
assert_equal(header_and_shortids.prefilled_txn[0].index, 0)
# Check that all prefilled_txn entries match what's in the block.
for entry in header_and_shortids.prefilled_txn:
entry.tx.calc_sha256()
# This checks the non-witness parts of the tx agree
assert_equal(entry.tx.sha256, block.vtx[entry.index].sha256)
# And this checks the witness
wtxid = entry.tx.calc_sha256(True)
assert_equal(wtxid, block.vtx[entry.index].calc_sha256(True))
# Check that the cmpctblock message announced all the transactions.
assert_equal(len(header_and_shortids.prefilled_txn) + len(header_and_shortids.shortids), len(block.vtx))
# And now check that all the shortids are as expected as well.
# Determine the siphash keys to use.
[k0, k1] = header_and_shortids.get_siphash_keys()
index = 0
while index < len(block.vtx):
if (len(header_and_shortids.prefilled_txn) > 0 and
header_and_shortids.prefilled_txn[0].index == index):
# Already checked prefilled transactions above
header_and_shortids.prefilled_txn.pop(0)
else:
tx_hash = block.vtx[index].calc_sha256(True)
shortid = calculate_shortid(k0, k1, tx_hash)
assert_equal(shortid, header_and_shortids.shortids[0])
header_and_shortids.shortids.pop(0)
index += 1
# Test that bitcoind requests compact blocks when we announce new blocks
# via header or inv, and that responding to getblocktxn causes the block
# to be successfully reconstructed.
def test_compactblock_requests(self, test_node):
node = self.nodes[0]
# Try announcing a block with an inv or header, expect a compactblock
# request
for announce in ["inv", "header"]:
block = self.build_block_on_tip(node)
if announce == "inv":
test_node.send_message(msg_inv([CInv(MSG_BLOCK, block.sha256)]))
test_node.wait_for_getheaders(timeout=30)
test_node.send_header_for_blocks([block])
else:
test_node.send_header_for_blocks([block])
test_node.wait_for_getdata([block.sha256], timeout=30)
assert_equal(test_node.last_message["getdata"].inv[0].type, 4)
# Send back a compactblock message that omits the coinbase
comp_block = HeaderAndShortIDs()
comp_block.header = CBlockHeader(block)
comp_block.nonce = 0
[k0, k1] = comp_block.get_siphash_keys()
coinbase_hash = block.vtx[0].calc_sha256(True)
comp_block.shortids = [calculate_shortid(k0, k1, coinbase_hash)]
test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock)
# Expect a getblocktxn message.
with p2p_lock:
assert "getblocktxn" in test_node.last_message
absolute_indexes = test_node.last_message["getblocktxn"].block_txn_request.to_absolute()
assert_equal(absolute_indexes, [0]) # should be a coinbase request
# Send the coinbase, and verify that the tip advances.
msg = msg_blocktxn()
msg.block_transactions.blockhash = block.sha256
msg.block_transactions.transactions = [block.vtx[0]]
test_node.send_and_ping(msg)
assert_equal(int(node.getbestblockhash(), 16), block.sha256)
# Create a chain of transactions from given utxo, and add to a new block.
def build_block_with_transactions(self, node, utxo, num_transactions):
block = self.build_block_on_tip(node)
for _ in range(num_transactions):
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(utxo[0], utxo[1]), b''))
tx.vout.append(CTxOut(utxo[2] - 1000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))
tx.rehash()
utxo = [tx.sha256, 0, tx.vout[0].nValue]
block.vtx.append(tx)
block.hashMerkleRoot = block.calc_merkle_root()
block.solve()
return block
# Test that we only receive getblocktxn requests for transactions that the
# node needs, and that responding to them causes the block to be
# reconstructed.
def test_getblocktxn_requests(self, test_node):
node = self.nodes[0]
def test_getblocktxn_response(compact_block, peer, expected_result):
msg = msg_cmpctblock(compact_block.to_p2p())
peer.send_and_ping(msg)
with p2p_lock:
assert "getblocktxn" in peer.last_message
absolute_indexes = peer.last_message["getblocktxn"].block_txn_request.to_absolute()
assert_equal(absolute_indexes, expected_result)
def test_tip_after_message(node, peer, msg, tip):
peer.send_and_ping(msg)
assert_equal(int(node.getbestblockhash(), 16), tip)
# First try announcing compactblocks that won't reconstruct, and verify
# that we receive getblocktxn messages back.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block, use_witness=True)
test_getblocktxn_response(comp_block, test_node, [1, 2, 3, 4, 5])
msg_bt = msg_no_witness_blocktxn()
msg_bt = msg_blocktxn() # serialize with witnesses
msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[1:])
test_tip_after_message(node, test_node, msg_bt, block.sha256)
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
# Now try interspersing the prefilled transactions
comp_block.initialize_from_block(block, prefill_list=[0, 1, 5], use_witness=True)
test_getblocktxn_response(comp_block, test_node, [2, 3, 4])
msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[2:5])
test_tip_after_message(node, test_node, msg_bt, block.sha256)
# Now try giving one transaction ahead of time.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
test_node.send_and_ping(msg_tx(block.vtx[1]))
assert block.vtx[1].hash in node.getrawmempool()
# Prefill 4 out of the 6 transactions, and verify that only the one
# that was not in the mempool is requested.
comp_block.initialize_from_block(block, prefill_list=[0, 2, 3, 4], use_witness=True)
test_getblocktxn_response(comp_block, test_node, [5])
msg_bt.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]])
test_tip_after_message(node, test_node, msg_bt, block.sha256)
# Now provide all transactions to the node before the block is
# announced and verify reconstruction happens immediately.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 10)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
for tx in block.vtx[1:]:
test_node.send_message(msg_tx(tx))
test_node.sync_with_ping()
# Make sure all transactions were accepted.
mempool = node.getrawmempool()
for tx in block.vtx[1:]:
assert tx.hash in mempool
# Clear out last request.
with p2p_lock:
test_node.last_message.pop("getblocktxn", None)
# Send compact block
comp_block.initialize_from_block(block, prefill_list=[0], use_witness=True)
test_tip_after_message(node, test_node, msg_cmpctblock(comp_block.to_p2p()), block.sha256)
with p2p_lock:
# Shouldn't have gotten a request for any transaction
assert "getblocktxn" not in test_node.last_message
# Incorrectly responding to a getblocktxn shouldn't cause the block to be
# permanently failed.
def test_incorrect_blocktxn_response(self, test_node):
node = self.nodes[0]
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 10)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
# Relay the first 5 transactions from the block in advance
for tx in block.vtx[1:6]:
test_node.send_message(msg_tx(tx))
test_node.sync_with_ping()
# Make sure all transactions were accepted.
mempool = node.getrawmempool()
for tx in block.vtx[1:6]:
assert tx.hash in mempool
# Send compact block
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block, prefill_list=[0], use_witness=True)
test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
absolute_indexes = []
with p2p_lock:
assert "getblocktxn" in test_node.last_message
absolute_indexes = test_node.last_message["getblocktxn"].block_txn_request.to_absolute()
assert_equal(absolute_indexes, [6, 7, 8, 9, 10])
# Now give an incorrect response.
# Note that it's possible for bitcoind to be smart enough to know we're
# lying, since it could check to see if the shortid matches what we're
# sending, and eg disconnect us for misbehavior. If that behavior
# change was made, we could just modify this test by having a
# different peer provide the block further down, so that we're still
# verifying that the block isn't marked bad permanently. This is good
# enough for now.
msg = msg_blocktxn()
msg.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]] + block.vtx[7:])
test_node.send_and_ping(msg)
# Tip should not have updated
assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock)
# We should receive a getdata request
test_node.wait_for_getdata([block.sha256], timeout=10)
assert test_node.last_message["getdata"].inv[0].type == MSG_BLOCK or \
test_node.last_message["getdata"].inv[0].type == MSG_BLOCK | MSG_WITNESS_FLAG
# Deliver the block
test_node.send_and_ping(msg_block(block))
assert_equal(int(node.getbestblockhash(), 16), block.sha256)
def test_getblocktxn_handler(self, test_node):
node = self.nodes[0]
# bitcoind will not send blocktxn responses for blocks whose height is
# more than 10 blocks deep.
MAX_GETBLOCKTXN_DEPTH = 10
chain_height = node.getblockcount()
current_height = chain_height
while (current_height >= chain_height - MAX_GETBLOCKTXN_DEPTH):
block_hash = node.getblockhash(current_height)
block = from_hex(CBlock(), node.getblock(block_hash, False))
msg = msg_getblocktxn()
msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [])
num_to_request = random.randint(1, len(block.vtx))
msg.block_txn_request.from_absolute(sorted(random.sample(range(len(block.vtx)), num_to_request)))
test_node.send_message(msg)
test_node.wait_until(lambda: "blocktxn" in test_node.last_message, timeout=10)
[tx.calc_sha256() for tx in block.vtx]
with p2p_lock:
assert_equal(test_node.last_message["blocktxn"].block_transactions.blockhash, int(block_hash, 16))
all_indices = msg.block_txn_request.to_absolute()
for index in all_indices:
tx = test_node.last_message["blocktxn"].block_transactions.transactions.pop(0)
tx.calc_sha256()
assert_equal(tx.sha256, block.vtx[index].sha256)
# Check that the witness matches
assert_equal(tx.calc_sha256(True), block.vtx[index].calc_sha256(True))
test_node.last_message.pop("blocktxn", None)
current_height -= 1
# Next request should send a full block response, as we're past the
# allowed depth for a blocktxn response.
block_hash = node.getblockhash(current_height)
msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [0])
with p2p_lock:
test_node.last_message.pop("block", None)
test_node.last_message.pop("blocktxn", None)
test_node.send_and_ping(msg)
with p2p_lock:
test_node.last_message["block"].block.calc_sha256()
assert_equal(test_node.last_message["block"].block.sha256, int(block_hash, 16))
assert "blocktxn" not in test_node.last_message
# Request with out-of-bounds tx index results in disconnect
bad_peer = self.nodes[0].add_p2p_connection(TestP2PConn())
block_hash = node.getblockhash(chain_height)
block = from_hex(CBlock(), node.getblock(block_hash, False))
msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [len(block.vtx)])
with node.assert_debug_log(['getblocktxn with out-of-bounds tx indices']):
bad_peer.send_message(msg)
bad_peer.wait_for_disconnect()
def test_low_work_compactblocks(self, test_node):
# A compactblock with insufficient work won't get its header included
node = self.nodes[0]
hashPrevBlock = int(node.getblockhash(node.getblockcount() - 150), 16)
block = self.build_block_on_tip(node)
block.hashPrevBlock = hashPrevBlock
block.solve()
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block)
with self.nodes[0].assert_debug_log(['[net] Ignoring low-work compact block from peer 0']):
test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
tips = node.getchaintips()
found = False
for x in tips:
if x["hash"] == block.hash:
found = True
break
assert not found
def test_compactblocks_not_at_tip(self, test_node):
node = self.nodes[0]
# Test that requesting old compactblocks doesn't work.
MAX_CMPCTBLOCK_DEPTH = 5
new_blocks = []
for _ in range(MAX_CMPCTBLOCK_DEPTH + 1):
test_node.clear_block_announcement()
new_blocks.append(self.generate(node, 1)[0])
test_node.wait_until(test_node.received_block_announcement, timeout=30)
test_node.clear_block_announcement()
test_node.send_message(msg_getdata([CInv(MSG_CMPCT_BLOCK, int(new_blocks[0], 16))]))
test_node.wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30)
test_node.clear_block_announcement()
self.generate(node, 1)
test_node.wait_until(test_node.received_block_announcement, timeout=30)
test_node.clear_block_announcement()
with p2p_lock:
test_node.last_message.pop("block", None)
test_node.send_message(msg_getdata([CInv(MSG_CMPCT_BLOCK, int(new_blocks[0], 16))]))
test_node.wait_until(lambda: "block" in test_node.last_message, timeout=30)
with p2p_lock:
test_node.last_message["block"].block.calc_sha256()
assert_equal(test_node.last_message["block"].block.sha256, int(new_blocks[0], 16))
# Generate an old compactblock, and verify that it's not accepted.
cur_height = node.getblockcount()
hashPrevBlock = int(node.getblockhash(cur_height - 5), 16)
block = self.build_block_on_tip(node)
block.hashPrevBlock = hashPrevBlock
block.solve()
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block)
test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
tips = node.getchaintips()
found = False
for x in tips:
if x["hash"] == block.hash:
assert_equal(x["status"], "headers-only")
found = True
break
assert found
# Requesting this block via getblocktxn should silently fail
# (to avoid fingerprinting attacks).
msg = msg_getblocktxn()
msg.block_txn_request = BlockTransactionsRequest(block.sha256, [0])
with p2p_lock:
test_node.last_message.pop("blocktxn", None)
test_node.send_and_ping(msg)
with p2p_lock:
assert "blocktxn" not in test_node.last_message
def test_end_to_end_block_relay(self, listeners):
node = self.nodes[0]
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 10)
[l.clear_block_announcement() for l in listeners]
# serialize without witness (this block has no witnesses anyway).
# TODO: repeat this test with witness tx's to a segwit node.
node.submitblock(block.serialize().hex())
for l in listeners:
l.wait_until(lambda: "cmpctblock" in l.last_message, timeout=30)
with p2p_lock:
for l in listeners:
l.last_message["cmpctblock"].header_and_shortids.header.calc_sha256()
assert_equal(l.last_message["cmpctblock"].header_and_shortids.header.sha256, block.sha256)
# Test that we don't get disconnected if we relay a compact block with valid header,
# but invalid transactions.
def test_invalid_tx_in_compactblock(self, test_node):
node = self.nodes[0]
assert len(self.utxos)
utxo = self.utxos[0]
block = self.build_block_with_transactions(node, utxo, 5)
del block.vtx[3]
block.hashMerkleRoot = block.calc_merkle_root()
# Drop the coinbase witness but include the witness commitment.
add_witness_commitment(block)
block.vtx[0].wit.vtxinwit = []
block.solve()
# Now send the compact block with all transactions prefilled, and
# verify that we don't get disconnected.
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block, prefill_list=[0, 1, 2, 3, 4], use_witness=True)
msg = msg_cmpctblock(comp_block.to_p2p())
test_node.send_and_ping(msg)
# Check that the tip didn't advance
assert int(node.getbestblockhash(), 16) is not block.sha256
test_node.sync_with_ping()
# Helper for enabling cb announcements
# Send the sendcmpct request and sync headers
def request_cb_announcements(self, peer):
node = self.nodes[0]
tip = node.getbestblockhash()
peer.get_headers(locator=[int(tip, 16)], hashstop=0)
peer.send_and_ping(msg_sendcmpct(announce=True, version=2))
def test_compactblock_reconstruction_stalling_peer(self, stalling_peer, delivery_peer):
node = self.nodes[0]
assert len(self.utxos)
def announce_cmpct_block(node, peer):
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 5)
cmpct_block = HeaderAndShortIDs()
cmpct_block.initialize_from_block(block)
msg = msg_cmpctblock(cmpct_block.to_p2p())
peer.send_and_ping(msg)
with p2p_lock:
assert "getblocktxn" in peer.last_message
return block, cmpct_block
block, cmpct_block = announce_cmpct_block(node, stalling_peer)
for tx in block.vtx[1:]:
delivery_peer.send_message(msg_tx(tx))
delivery_peer.sync_with_ping()
mempool = node.getrawmempool()
for tx in block.vtx[1:]:
assert tx.hash in mempool
delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p()))
assert_equal(int(node.getbestblockhash(), 16), block.sha256)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
# Now test that delivering an invalid compact block won't break relay
block, cmpct_block = announce_cmpct_block(node, stalling_peer)
for tx in block.vtx[1:]:
delivery_peer.send_message(msg_tx(tx))
delivery_peer.sync_with_ping()
cmpct_block.prefilled_txn[0].tx.wit.vtxinwit = [CTxInWitness()]
cmpct_block.prefilled_txn[0].tx.wit.vtxinwit[0].scriptWitness.stack = [ser_uint256(0)]
cmpct_block.use_witness = True
delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p()))
assert int(node.getbestblockhash(), 16) != block.sha256
msg = msg_no_witness_blocktxn()
msg.block_transactions.blockhash = block.sha256
msg.block_transactions.transactions = block.vtx[1:]
stalling_peer.send_and_ping(msg)
assert_equal(int(node.getbestblockhash(), 16), block.sha256)
def test_highbandwidth_mode_states_via_getpeerinfo(self):
# create new p2p connection for a fresh state w/o any prior sendcmpct messages sent
hb_test_node = self.nodes[0].add_p2p_connection(TestP2PConn())
# assert the RPC getpeerinfo boolean fields `bip152_hb_{to, from}`
# match the given parameters for the last peer of a given node
def assert_highbandwidth_states(node, hb_to, hb_from):
peerinfo = node.getpeerinfo()[-1]
assert_equal(peerinfo['bip152_hb_to'], hb_to)
assert_equal(peerinfo['bip152_hb_from'], hb_from)
# initially, neither node has selected the other peer as high-bandwidth yet
assert_highbandwidth_states(self.nodes[0], hb_to=False, hb_from=False)
# peer requests high-bandwidth mode by sending sendcmpct(1)
hb_test_node.send_and_ping(msg_sendcmpct(announce=True, version=2))
assert_highbandwidth_states(self.nodes[0], hb_to=False, hb_from=True)
# peer generates a block and sends it to node, which should
# select the peer as high-bandwidth (up to 3 peers according to BIP 152)
block = self.build_block_on_tip(self.nodes[0])
hb_test_node.send_and_ping(msg_block(block))
assert_highbandwidth_states(self.nodes[0], hb_to=True, hb_from=True)
# peer requests low-bandwidth mode by sending sendcmpct(0)
hb_test_node.send_and_ping(msg_sendcmpct(announce=False, version=2))
assert_highbandwidth_states(self.nodes[0], hb_to=True, hb_from=False)
def test_compactblock_reconstruction_parallel_reconstruction(self, stalling_peer, delivery_peer, inbound_peer, outbound_peer):
""" All p2p connections are inbound except outbound_peer. We test that ultimate parallel slot
can only be taken by an outbound node unless prior attempts were done by an outbound
"""
node = self.nodes[0]
assert len(self.utxos)
def announce_cmpct_block(node, peer, txn_count):
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, txn_count)
cmpct_block = HeaderAndShortIDs()
cmpct_block.initialize_from_block(block)
msg = msg_cmpctblock(cmpct_block.to_p2p())
peer.send_and_ping(msg)
with p2p_lock:
assert "getblocktxn" in peer.last_message
return block, cmpct_block
for name, peer in [("delivery", delivery_peer), ("inbound", inbound_peer), ("outbound", outbound_peer)]:
self.log.info(f"Setting {name} as high bandwidth peer")
block, cmpct_block = announce_cmpct_block(node, peer, 1)
msg = msg_blocktxn()
msg.block_transactions.blockhash = block.sha256
msg.block_transactions.transactions = block.vtx[1:]
peer.send_and_ping(msg)
assert_equal(int(node.getbestblockhash(), 16), block.sha256)
peer.clear_getblocktxn()
# Test the simple parallel download case...
for num_missing in [1, 5, 20]:
# Remaining low-bandwidth peer is stalling_peer, who announces first
assert_equal([peer['bip152_hb_to'] for peer in node.getpeerinfo()], [False, True, True, True])
block, cmpct_block = announce_cmpct_block(node, stalling_peer, num_missing)
delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p()))
with p2p_lock:
# The second peer to announce should still get a getblocktxn
assert "getblocktxn" in delivery_peer.last_message
assert int(node.getbestblockhash(), 16) != block.sha256
inbound_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p()))
with p2p_lock:
# The third inbound peer to announce should *not* get a getblocktxn
assert "getblocktxn" not in inbound_peer.last_message
assert int(node.getbestblockhash(), 16) != block.sha256
outbound_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p()))
with p2p_lock:
# The third peer to announce should get a getblocktxn if outbound
assert "getblocktxn" in outbound_peer.last_message
assert int(node.getbestblockhash(), 16) != block.sha256
# Second peer completes the compact block first
msg = msg_blocktxn()
msg.block_transactions.blockhash = block.sha256
msg.block_transactions.transactions = block.vtx[1:]
delivery_peer.send_and_ping(msg)
assert_equal(int(node.getbestblockhash(), 16), block.sha256)
# Nothing bad should happen if we get a late fill from the first peer...
stalling_peer.send_and_ping(msg)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
delivery_peer.clear_getblocktxn()
inbound_peer.clear_getblocktxn()
outbound_peer.clear_getblocktxn()
def run_test(self):
self.wallet = MiniWallet(self.nodes[0])
# Setup the p2p connections
self.segwit_node = self.nodes[0].add_p2p_connection(TestP2PConn())
self.additional_segwit_node = self.nodes[0].add_p2p_connection(TestP2PConn())
self.onemore_inbound_node = self.nodes[0].add_p2p_connection(TestP2PConn())
self.outbound_node = self.nodes[0].add_outbound_p2p_connection(TestP2PConn(), p2p_idx=3, connection_type="outbound-full-relay")
# We will need UTXOs to construct transactions in later tests.
self.make_utxos()
assert softfork_active(self.nodes[0], "segwit")
self.log.info("Testing SENDCMPCT p2p message... ")
self.test_sendcmpct(self.segwit_node)
self.test_sendcmpct(self.additional_segwit_node)
self.test_sendcmpct(self.onemore_inbound_node)
self.test_sendcmpct(self.outbound_node)
self.log.info("Testing compactblock construction...")
self.test_compactblock_construction(self.segwit_node)
self.log.info("Testing compactblock requests (segwit node)... ")
self.test_compactblock_requests(self.segwit_node)
self.log.info("Testing getblocktxn requests (segwit node)...")
self.test_getblocktxn_requests(self.segwit_node)
self.log.info("Testing getblocktxn handler (segwit node should return witnesses)...")
self.test_getblocktxn_handler(self.segwit_node)
self.log.info("Testing compactblock requests/announcements not at chain tip...")
self.test_compactblocks_not_at_tip(self.segwit_node)
self.log.info("Testing handling of low-work compact blocks...")
self.test_low_work_compactblocks(self.segwit_node)
self.log.info("Testing handling of incorrect blocktxn responses...")
self.test_incorrect_blocktxn_response(self.segwit_node)
self.log.info("Testing reconstructing compact blocks with a stalling peer...")
self.test_compactblock_reconstruction_stalling_peer(self.segwit_node, self.additional_segwit_node)
self.log.info("Testing reconstructing compact blocks from multiple peers...")
self.test_compactblock_reconstruction_parallel_reconstruction(stalling_peer=self.segwit_node, inbound_peer=self.onemore_inbound_node, delivery_peer=self.additional_segwit_node, outbound_peer=self.outbound_node)
# Test that if we submitblock to node1, we'll get a compact block
# announcement to all peers.
# (Post-segwit activation, blocks won't propagate from node0 to node1
# automatically, so don't bother testing a block announced to node0.)
self.log.info("Testing end-to-end block relay...")
self.request_cb_announcements(self.segwit_node)
self.request_cb_announcements(self.additional_segwit_node)
self.test_end_to_end_block_relay([self.segwit_node, self.additional_segwit_node])
self.log.info("Testing handling of invalid compact blocks...")
self.test_invalid_tx_in_compactblock(self.segwit_node)
self.log.info("Testing invalid index in cmpctblock message...")
self.test_invalid_cmpctblock_message()
self.log.info("Testing high-bandwidth mode states via getpeerinfo...")
self.test_highbandwidth_mode_states_via_getpeerinfo()
if __name__ == '__main__':
CompactBlocksTest(__file__).main()