-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgradepp.py
90 lines (73 loc) · 3.11 KB
/
gradepp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Import libraries
import json
import pandas as pd
from bson import ObjectId
from flask import Flask, request, jsonify, render_template
import models
app = Flask(__name__, instance_relative_config=True)
# Load the default configuration
app.config.from_object('config')
# Load the model
ml_models = models.read_all_ml_models(app.config["ML_MODELS_FOLDER"])
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
data = request.get_json(force=True)
if "id" in data:
student_id = data["id"]
else:
return {"Error": "Please provide a student ID (id)."}
if "courses" in data:
courses = data["courses"]
else:
return {"Error": "Please provide course IDs in a list (courses)."}
return predict(student_id, courses)
else:
return render_template("index.html")
@app.route("/courses", methods=['GET'])
def get_courses():
return jsonify(models.available_courses(app.config["ML_MODELS_FOLDER"]))
@app.route("/check_version", methods=['GET'])
def get_version():
return jsonify(app.config["VERSION"])
def predict(student_id, courses):
# Get the data from the POST request.
student = models.get_user(app.config["MONGO_DB_URL"].replace("<password>", app.config["MONGO_DB_PASSWORD"]),
student_id)
if student is not None:
if 'grades' in student:
student_df = pd.DataFrame(student['grades'])
student_df = student_df[['_id', 'grade']]
student_df_transposed = student_df.T
headers = student_df_transposed.iloc[0]
student_grades = pd.DataFrame(student_df_transposed.values[1:], columns=headers)
predictions = dict()
predictions["version"] = app.config["VERSION"]
for course in courses:
if course in models.available_courses(app.config["ML_MODELS_FOLDER"]):
ml_model = ml_models[course]
features = ml_model.get_booster().feature_names
selected_features = dict()
courses_with_grade = student_grades.columns
for feature in features:
if feature in courses_with_grade:
selected_features[feature] = student_grades[feature].values[0]
else:
selected_features[feature] = -1
selected_features = pd.DataFrame(selected_features, index=[1, ])
prediction = round(ml_model.predict(selected_features)[0],2)
if prediction > 10:
prediction = 10.00
predictions[course] = str(prediction)
else:
predictions[course] = "Not Available"
return JSONEncoder().encode(predictions)
else:
return {"Error": "Student not found"}
class JSONEncoder(json.JSONEncoder):
def default(self, o):
if isinstance(o, ObjectId):
return str(o)
return json.JSONEncoder.default(self, o)
if __name__ == '__main__':
app.run()