-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAcceleration.hpp
350 lines (287 loc) · 14.4 KB
/
Acceleration.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// Copyright © 2020-2024 Alexandre Coderre-Chabot
//
// This file is part of Physical Quantities (PhQ), a C++ library of physical quantities, physical
// models, and units of measure for scientific computing.
//
// Physical Quantities is hosted at:
// https://github.com/acodcha/phq
//
// Physical Quantities is licensed under the MIT License:
// https://mit-license.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute,
// sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// - The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef PHQ_ACCELERATION_HPP
#define PHQ_ACCELERATION_HPP
#include <array>
#include <cstddef>
#include <functional>
#include <ostream>
#include "Angle.hpp"
#include "DimensionalVector.hpp"
#include "Direction.hpp"
#include "Frequency.hpp"
#include "PlanarAcceleration.hpp"
#include "ScalarAcceleration.hpp"
#include "Time.hpp"
#include "Unit/Acceleration.hpp"
#include "Vector.hpp"
#include "Velocity.hpp"
namespace PhQ {
/// \brief Three-dimensional Euclidean acceleration vector. Contains three components in Cartesian
/// coordinates: x, y, and z. For a two-dimensional Euclidean acceleration vector in the XY plane,
/// see PhQ::PlanarAcceleration. For scalar acceleration components or for the magnitude of an
/// acceleration vector, see PhQ::ScalarAcceleration.
template <typename NumericType = double>
class Acceleration : public DimensionalVector<Unit::Acceleration, NumericType> {
public:
/// \brief Default constructor. Constructs an acceleration vector with an uninitialized value.
Acceleration() = default;
/// \brief Constructor. Constructs an acceleration vector with a given value expressed in a given
/// acceleration unit.
Acceleration(const Vector<NumericType>& value, const Unit::Acceleration unit)
: DimensionalVector<Unit::Acceleration, NumericType>(value, unit) {}
/// \brief Constructor. Constructs an acceleration vector from a given set of scalar acceleration
/// components.
Acceleration(const ScalarAcceleration<NumericType>& x, const ScalarAcceleration<NumericType>& y,
const ScalarAcceleration<NumericType>& z)
: Acceleration<NumericType>({x.Value(), y.Value(), z.Value()}) {}
/// \brief Constructor. Constructs an acceleration vector from a given scalar acceleration
/// magnitude and direction.
constexpr Acceleration(const ScalarAcceleration<NumericType>& scalar_acceleration,
const Direction<NumericType>& direction)
: Acceleration<NumericType>(scalar_acceleration.Value() * direction.Value()) {}
/// \brief Constructor. Constructs an acceleration vector from a given planar acceleration vector
/// in the XY plane. This acceleration vector's z-component is initialized to zero.
explicit constexpr Acceleration(const PlanarAcceleration<NumericType>& planar_acceleration)
: Acceleration<NumericType>(Vector<NumericType>{planar_acceleration.Value()}) {}
/// \brief Constructor. Constructs an acceleration vector from a given velocity and time using the
/// definition of acceleration.
constexpr Acceleration(const Velocity<NumericType>& velocity, const Time<NumericType>& time)
: Acceleration<NumericType>(velocity.Value() / time.Value()) {}
/// \brief Constructor. Constructs an acceleration vector from a given velocity and frequency
/// using the definition of acceleration.
constexpr Acceleration(
const Velocity<NumericType>& velocity, const Frequency<NumericType>& frequency)
: Acceleration<NumericType>(velocity.Value() * frequency.Value()) {}
/// \brief Destructor. Destroys this acceleration vector.
~Acceleration() noexcept = default;
/// \brief Copy constructor. Constructs an acceleration vector by copying another one.
constexpr Acceleration(const Acceleration<NumericType>& other) = default;
/// \brief Copy constructor. Constructs an acceleration vector by copying another one.
template <typename OtherNumericType>
explicit constexpr Acceleration(const Acceleration<OtherNumericType>& other)
: Acceleration(static_cast<Vector<NumericType>>(other.Value())) {}
/// \brief Move constructor. Constructs an acceleration vector by moving another one.
constexpr Acceleration(Acceleration<NumericType>&& other) noexcept = default;
/// \brief Copy assignment operator. Assigns this acceleration vector by copying another one.
constexpr Acceleration<NumericType>& operator=(const Acceleration<NumericType>& other) = default;
/// \brief Copy assignment operator. Assigns this acceleration vector by copying another one.
template <typename OtherNumericType>
constexpr Acceleration<NumericType>& operator=(const Acceleration<OtherNumericType>& other) {
this->value = static_cast<Vector<NumericType>>(other.Value());
return *this;
}
/// \brief Move assignment operator. Assigns this acceleration vector by moving another one.
constexpr Acceleration<NumericType>& operator=(
Acceleration<NumericType>&& other) noexcept = default;
/// \brief Statically creates an acceleration vector of zero.
[[nodiscard]] static constexpr Acceleration<NumericType> Zero() {
return Acceleration<NumericType>{Vector<NumericType>::Zero()};
}
/// \brief Statically creates an acceleration vector from the given x, y, and z Cartesian
/// components expressed in a given acceleration unit.
template <Unit::Acceleration Unit>
[[nodiscard]] static constexpr Acceleration<NumericType> Create(
const NumericType x, const NumericType y, const NumericType z) {
return Acceleration<NumericType>{
ConvertStatically<Unit::Acceleration, Unit, Standard<Unit::Acceleration>>(
Vector<NumericType>{x, y, z})};
}
/// \brief Statically creates an acceleration vector from the given x, y, and z Cartesian
/// components expressed in a given acceleration unit.
template <Unit::Acceleration Unit>
[[nodiscard]] static constexpr Acceleration<NumericType> Create(
const std::array<NumericType, 3>& x_y_z) {
return Acceleration<NumericType>{
ConvertStatically<Unit::Acceleration, Unit, Standard<Unit::Acceleration>>(
Vector<NumericType>{x_y_z})};
}
/// \brief Statically creates an acceleration vector with a given value expressed in a given
/// acceleration unit.
template <Unit::Acceleration Unit>
[[nodiscard]] static constexpr Acceleration<NumericType> Create(
const Vector<NumericType>& value) {
return Acceleration<NumericType>{
ConvertStatically<Unit::Acceleration, Unit, Standard<Unit::Acceleration>>(value)};
}
/// \brief Returns the x Cartesian component of this acceleration vector.
[[nodiscard]] constexpr ScalarAcceleration<NumericType> x() const noexcept {
return ScalarAcceleration<NumericType>{this->value.x()};
}
/// \brief Returns the y Cartesian component of this acceleration vector.
[[nodiscard]] constexpr ScalarAcceleration<NumericType> y() const noexcept {
return ScalarAcceleration<NumericType>{this->value.y()};
}
/// \brief Returns the z Cartesian component of this acceleration vector.
[[nodiscard]] constexpr ScalarAcceleration<NumericType> z() const noexcept {
return ScalarAcceleration<NumericType>{this->value.z()};
}
/// \brief Returns the magnitude of this acceleration vector.
[[nodiscard]] ScalarAcceleration<NumericType> Magnitude() const {
return ScalarAcceleration<NumericType>{this->value.Magnitude()};
}
/// \brief Returns the direction of this acceleration vector.
[[nodiscard]] PhQ::Direction<NumericType> Direction() const {
return this->value.Direction();
}
/// \brief Returns the angle between this acceleration vector and another one.
[[nodiscard]] PhQ::Angle<NumericType> Angle(const Acceleration<NumericType>& other) const {
return PhQ::Angle<NumericType>{*this, other};
}
constexpr Acceleration<NumericType> operator+(const Acceleration<NumericType>& other) const {
return Acceleration<NumericType>{this->value + other.value};
}
constexpr Acceleration<NumericType> operator-(const Acceleration<NumericType>& other) const {
return Acceleration<NumericType>{this->value - other.value};
}
constexpr Acceleration<NumericType> operator*(const NumericType number) const {
return Acceleration<NumericType>{this->value * number};
}
constexpr Velocity<NumericType> operator*(const Time<NumericType>& time) const {
return Velocity<NumericType>{*this, time};
}
constexpr Acceleration<NumericType> operator/(const NumericType number) const {
return Acceleration<NumericType>{this->value / number};
}
constexpr Velocity<NumericType> operator/(const Frequency<NumericType>& frequency) const {
return Velocity<NumericType>{*this, frequency};
}
constexpr void operator+=(const Acceleration<NumericType>& other) noexcept {
this->value += other.value;
}
constexpr void operator-=(const Acceleration<NumericType>& other) noexcept {
this->value -= other.value;
}
constexpr void operator*=(const NumericType number) noexcept {
this->value *= number;
}
constexpr void operator/=(const NumericType number) noexcept {
this->value /= number;
}
private:
/// \brief Constructor. Constructs an acceleration vector with a given value expressed in the
/// standard acceleration unit.
explicit constexpr Acceleration(const Vector<NumericType>& value)
: DimensionalVector<Unit::Acceleration, NumericType>(value) {}
};
template <typename NumericType>
inline constexpr bool operator==(
const Acceleration<NumericType>& left, const Acceleration<NumericType>& right) noexcept {
return left.Value() == right.Value();
}
template <typename NumericType>
inline constexpr bool operator!=(
const Acceleration<NumericType>& left, const Acceleration<NumericType>& right) noexcept {
return left.Value() != right.Value();
}
template <typename NumericType>
inline constexpr bool operator<(
const Acceleration<NumericType>& left, const Acceleration<NumericType>& right) noexcept {
return left.Value() < right.Value();
}
template <typename NumericType>
inline constexpr bool operator>(
const Acceleration<NumericType>& left, const Acceleration<NumericType>& right) noexcept {
return left.Value() > right.Value();
}
template <typename NumericType>
inline constexpr bool operator<=(
const Acceleration<NumericType>& left, const Acceleration<NumericType>& right) noexcept {
return left.Value() <= right.Value();
}
template <typename NumericType>
inline constexpr bool operator>=(
const Acceleration<NumericType>& left, const Acceleration<NumericType>& right) noexcept {
return left.Value() >= right.Value();
}
template <typename NumericType>
inline std::ostream& operator<<(
std::ostream& stream, const Acceleration<NumericType>& acceleration) {
stream << acceleration.Print();
return stream;
}
template <typename NumericType>
inline constexpr Acceleration<NumericType> operator*(
const NumericType number, const Acceleration<NumericType>& acceleration) {
return acceleration * number;
}
template <typename NumericType>
inline Direction<NumericType>::Direction(const Acceleration<NumericType>& acceleration)
: Direction<NumericType>(acceleration.Value()) {}
template <typename NumericType>
inline Angle<NumericType>::Angle(const Acceleration<NumericType>& acceleration_1,
const Acceleration<NumericType>& acceleration_2)
: Angle<NumericType>(acceleration_1.Value(), acceleration_2.Value()) {}
template <typename NumericType>
inline constexpr PlanarAcceleration<NumericType>::PlanarAcceleration(
const Acceleration<NumericType>& acceleration)
: PlanarAcceleration(PlanarVector<NumericType>{acceleration.Value()}) {}
template <typename NumericType>
inline constexpr Velocity<NumericType>::Velocity(
const Acceleration<NumericType>& acceleration, const Time<NumericType>& time)
: Velocity<NumericType>(acceleration.Value() * time.Value()) {}
template <typename NumericType>
inline constexpr Velocity<NumericType>::Velocity(
const Acceleration<NumericType>& acceleration, const Frequency<NumericType>& frequency)
: Velocity<NumericType>(acceleration.Value() / frequency.Value()) {}
template <typename NumericType>
inline constexpr Acceleration<NumericType> Direction<NumericType>::operator*(
const ScalarAcceleration<NumericType>& scalar_acceleration) const {
return Acceleration<NumericType>{scalar_acceleration, *this};
}
template <typename NumericType>
inline constexpr Velocity<NumericType> Time<NumericType>::operator*(
const Acceleration<NumericType>& acceleration) const {
return Velocity<NumericType>{acceleration, *this};
}
template <typename NumericType>
inline constexpr Acceleration<NumericType> ScalarAcceleration<NumericType>::operator*(
const Direction<NumericType>& direction) const {
return Acceleration<NumericType>{*this, direction};
}
template <typename NumericType>
inline constexpr Acceleration<NumericType> Velocity<NumericType>::operator*(
const Frequency<NumericType>& frequency) const {
return Acceleration<NumericType>{*this, frequency};
}
template <typename NumericType>
inline constexpr Acceleration<NumericType> Frequency<NumericType>::operator*(
const Velocity<NumericType>& velocity) const {
return Acceleration<NumericType>{velocity, *this};
}
template <typename NumericType>
inline constexpr Acceleration<NumericType> Velocity<NumericType>::operator/(
const Time<NumericType>& time) const {
return Acceleration<NumericType>{*this, time};
}
} // namespace PhQ
namespace std {
template <typename NumericType>
struct hash<PhQ::Acceleration<NumericType>> {
inline size_t operator()(const PhQ::Acceleration<NumericType>& acceleration) const {
return hash<PhQ::Vector<NumericType>>()(acceleration.Value());
}
};
} // namespace std
#endif // PHQ_ACCELERATION_HPP