-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPlanarAcceleration.hpp
346 lines (285 loc) · 15 KB
/
PlanarAcceleration.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
// Copyright © 2020-2024 Alexandre Coderre-Chabot
//
// This file is part of Physical Quantities (PhQ), a C++ library of physical quantities, physical
// models, and units of measure for scientific computing.
//
// Physical Quantities is hosted at:
// https://github.com/acodcha/phq
//
// Physical Quantities is licensed under the MIT License:
// https://mit-license.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute,
// sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// - The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef PHQ_PLANAR_ACCELERATION_HPP
#define PHQ_PLANAR_ACCELERATION_HPP
#include <array>
#include <cstddef>
#include <functional>
#include <ostream>
#include "Angle.hpp"
#include "DimensionalPlanarVector.hpp"
#include "Frequency.hpp"
#include "PlanarDirection.hpp"
#include "PlanarVector.hpp"
#include "PlanarVelocity.hpp"
#include "ScalarAcceleration.hpp"
#include "Time.hpp"
#include "Unit/Acceleration.hpp"
namespace PhQ {
/// \brief Two-dimensional Euclidean acceleration vector in the XY plane. Contains two components in
/// Cartesian coordinates: x and y. For a three-dimensional Euclidean acceleration vector, see
/// PhQ::Acceleration. For scalar acceleration components or for the magnitude of an acceleration
/// vector, see PhQ::ScalarAcceleration.
template <typename NumericType = double>
class PlanarAcceleration : public DimensionalPlanarVector<Unit::Acceleration, NumericType> {
public:
/// \brief Default constructor. Constructs a planar acceleration vector with an uninitialized
/// value.
PlanarAcceleration() = default;
/// \brief Constructor. Constructs a planar acceleration vector with a given value expressed in a
/// given acceleration unit.
PlanarAcceleration(const PlanarVector<NumericType>& value, const Unit::Acceleration unit)
: DimensionalPlanarVector<Unit::Acceleration, NumericType>(value, unit) {}
/// \brief Constructor. Constructs a planar acceleration vector from a given set of scalar
/// acceleration components.
PlanarAcceleration(
const ScalarAcceleration<NumericType>& x, const ScalarAcceleration<NumericType>& y)
: PlanarAcceleration<NumericType>({x.Value(), y.Value()}) {}
/// \brief Constructor. Constructs a planar acceleration vector from a given scalar acceleration
/// magnitude and planar direction.
constexpr PlanarAcceleration(const ScalarAcceleration<NumericType>& scalar_acceleration,
const PlanarDirection<NumericType>& planar_direction)
: PlanarAcceleration<NumericType>(scalar_acceleration.Value() * planar_direction.Value()) {}
/// \brief Constructor. Constructs a planar acceleration vector from a given acceleration vector
/// by projecting the acceleration vector onto the XY plane.
explicit constexpr PlanarAcceleration(const Acceleration<NumericType>& acceleration);
/// \brief Constructor. Constructs a planar acceleration vector from a given planar velocity and
/// time using the definition of acceleration.
constexpr PlanarAcceleration(
const PlanarVelocity<NumericType>& planar_velocity, const Time<NumericType>& time)
: PlanarAcceleration<NumericType>(planar_velocity.Value() / time.Value()) {}
/// \brief Constructor. Constructs a planar acceleration vector from a given planar velocity and
/// frequency using the definition of acceleration.
constexpr PlanarAcceleration(
const PlanarVelocity<NumericType>& planar_velocity, const Frequency<NumericType>& frequency)
: PlanarAcceleration<NumericType>(planar_velocity.Value() * frequency.Value()) {}
/// \brief Destructor. Destroys this acceleration vector.
~PlanarAcceleration() noexcept = default;
/// \brief Copy constructor. Constructs a planar acceleration vector by copying another one.
constexpr PlanarAcceleration(const PlanarAcceleration<NumericType>& other) = default;
/// \brief Copy constructor. Constructs a planar acceleration vector by copying another one.
template <typename OtherNumericType>
explicit constexpr PlanarAcceleration(const PlanarAcceleration<OtherNumericType>& other)
: PlanarAcceleration(static_cast<PlanarVector<NumericType>>(other.Value())) {}
/// \brief Move constructor. Constructs a planar acceleration vector by moving another one.
constexpr PlanarAcceleration(PlanarAcceleration<NumericType>&& other) noexcept = default;
/// \brief Copy assignment operator. Assigns this acceleration vector by copying another one.
constexpr PlanarAcceleration<NumericType>& operator=(
const PlanarAcceleration<NumericType>& other) = default;
/// \brief Copy assignment operator. Assigns this acceleration vector by copying another one.
template <typename OtherNumericType>
constexpr PlanarAcceleration<NumericType>& operator=(
const PlanarAcceleration<OtherNumericType>& other) {
this->value = static_cast<PlanarVector<NumericType>>(other.Value());
return *this;
}
/// \brief Move assignment operator. Assigns this acceleration vector by moving another one.
constexpr PlanarAcceleration<NumericType>& operator=(
PlanarAcceleration<NumericType>&& other) noexcept = default;
/// \brief Statically creates a planar acceleration vector of zero.
[[nodiscard]] static constexpr PlanarAcceleration<NumericType> Zero() {
return PlanarAcceleration<NumericType>{PlanarVector<NumericType>::Zero()};
}
/// \brief Statically creates a planar acceleration vector from the given x and y Cartesian
/// components expressed in a given acceleration unit.
template <Unit::Acceleration Unit>
[[nodiscard]] static constexpr PlanarAcceleration<NumericType> Create(
const NumericType x, const NumericType y) {
return PlanarAcceleration<NumericType>{
ConvertStatically<Unit::Acceleration, Unit, Standard<Unit::Acceleration>>(
PlanarVector<NumericType>{x, y})};
}
/// \brief Statically creates a planar acceleration vector from the given x and y Cartesian
/// components expressed in a given acceleration unit.
template <Unit::Acceleration Unit>
[[nodiscard]] static constexpr PlanarAcceleration<NumericType> Create(
const std::array<NumericType, 2>& x_y) {
return PlanarAcceleration<NumericType>{
ConvertStatically<Unit::Acceleration, Unit, Standard<Unit::Acceleration>>(
PlanarVector<NumericType>{x_y})};
}
/// \brief Statically creates a planar acceleration vector with a given value expressed in a given
/// acceleration unit.
template <Unit::Acceleration Unit>
[[nodiscard]] static constexpr PlanarAcceleration<NumericType> Create(
const PlanarVector<NumericType>& value) {
return PlanarAcceleration<NumericType>{
ConvertStatically<Unit::Acceleration, Unit, Standard<Unit::Acceleration>>(value)};
}
/// \brief Returns the x Cartesian component of this acceleration vector.
[[nodiscard]] constexpr ScalarAcceleration<NumericType> x() const noexcept {
return ScalarAcceleration<NumericType>{this->value.x()};
}
/// \brief Returns the y Cartesian component of this acceleration vector.
[[nodiscard]] constexpr ScalarAcceleration<NumericType> y() const noexcept {
return ScalarAcceleration<NumericType>{this->value.y()};
}
/// \brief Returns the magnitude of this acceleration vector.
[[nodiscard]] ScalarAcceleration<NumericType> Magnitude() const {
return ScalarAcceleration<NumericType>{this->value.Magnitude()};
}
/// \brief Returns the planar direction of this acceleration vector.
[[nodiscard]] PhQ::PlanarDirection<NumericType> PlanarDirection() const {
return this->value.PlanarDirection();
}
/// \brief Returns the angle between this acceleration vector and another one.
[[nodiscard]] PhQ::Angle<NumericType> Angle(const PlanarAcceleration<NumericType>& other) const {
return PhQ::Angle<NumericType>{*this, other};
}
constexpr PlanarAcceleration<NumericType> operator+(
const PlanarAcceleration<NumericType>& other) const {
return PlanarAcceleration<NumericType>{this->value + other.value};
}
constexpr PlanarAcceleration<NumericType> operator-(
const PlanarAcceleration<NumericType>& other) const {
return PlanarAcceleration<NumericType>{this->value - other.value};
}
constexpr PlanarAcceleration<NumericType> operator*(const NumericType number) const {
return PlanarAcceleration<NumericType>{this->value * number};
}
constexpr PlanarVelocity<NumericType> operator*(const Time<NumericType>& time) const {
return PlanarVelocity<NumericType>{*this, time};
}
constexpr PlanarAcceleration<NumericType> operator/(const NumericType number) const {
return PlanarAcceleration<NumericType>{this->value / number};
}
constexpr PlanarVelocity<NumericType> operator/(const Frequency<NumericType>& frequency) const {
return PlanarVelocity<NumericType>{*this, frequency};
}
constexpr void operator+=(const PlanarAcceleration<NumericType>& other) noexcept {
this->value += other.value;
}
constexpr void operator-=(const PlanarAcceleration<NumericType>& other) noexcept {
this->value -= other.value;
}
constexpr void operator*=(const NumericType number) noexcept {
this->value *= number;
}
constexpr void operator/=(const NumericType number) noexcept {
this->value /= number;
}
private:
/// \brief Constructor. Constructs a planar acceleration vector with a given value expressed in
/// the standard acceleration unit.
explicit constexpr PlanarAcceleration(const PlanarVector<NumericType>& value)
: DimensionalPlanarVector<Unit::Acceleration, NumericType>(value) {}
};
template <typename NumericType>
inline constexpr bool operator==(const PlanarAcceleration<NumericType>& left,
const PlanarAcceleration<NumericType>& right) noexcept {
return left.Value() == right.Value();
}
template <typename NumericType>
inline constexpr bool operator!=(const PlanarAcceleration<NumericType>& left,
const PlanarAcceleration<NumericType>& right) noexcept {
return left.Value() != right.Value();
}
template <typename NumericType>
inline constexpr bool operator<(const PlanarAcceleration<NumericType>& left,
const PlanarAcceleration<NumericType>& right) noexcept {
return left.Value() < right.Value();
}
template <typename NumericType>
inline constexpr bool operator>(const PlanarAcceleration<NumericType>& left,
const PlanarAcceleration<NumericType>& right) noexcept {
return left.Value() > right.Value();
}
template <typename NumericType>
inline constexpr bool operator<=(const PlanarAcceleration<NumericType>& left,
const PlanarAcceleration<NumericType>& right) noexcept {
return left.Value() <= right.Value();
}
template <typename NumericType>
inline constexpr bool operator>=(const PlanarAcceleration<NumericType>& left,
const PlanarAcceleration<NumericType>& right) noexcept {
return left.Value() >= right.Value();
}
template <typename NumericType>
inline std::ostream& operator<<(
std::ostream& stream, const PlanarAcceleration<NumericType>& planar_acceleration) {
stream << planar_acceleration.Print();
return stream;
}
template <typename NumericType>
inline constexpr PlanarAcceleration<NumericType> operator*(
const NumericType number, const PlanarAcceleration<NumericType>& planar_acceleration) {
return planar_acceleration * number;
}
template <typename NumericType>
inline PlanarDirection<NumericType>::PlanarDirection(
const PlanarAcceleration<NumericType>& planar_acceleration)
: PlanarDirection<NumericType>(planar_acceleration.Value()) {}
template <typename NumericType>
inline Angle<NumericType>::Angle(const PlanarAcceleration<NumericType>& planar_acceleration_1,
const PlanarAcceleration<NumericType>& planar_acceleration_2)
: Angle<NumericType>(planar_acceleration_1.Value(), planar_acceleration_2.Value()) {}
template <typename NumericType>
inline constexpr PlanarVelocity<NumericType>::PlanarVelocity(
const PlanarAcceleration<NumericType>& planar_acceleration, const Time<NumericType>& time)
: PlanarVelocity<NumericType>(planar_acceleration.Value() * time.Value()) {}
template <typename NumericType>
inline constexpr PlanarVelocity<NumericType>::PlanarVelocity(
const PlanarAcceleration<NumericType>& planar_acceleration,
const Frequency<NumericType>& frequency)
: PlanarVelocity<NumericType>(planar_acceleration.Value() / frequency.Value()) {}
template <typename NumericType>
inline constexpr PlanarAcceleration<NumericType> PlanarDirection<NumericType>::operator*(
const ScalarAcceleration<NumericType>& scalar_acceleration) const {
return PlanarAcceleration<NumericType>{scalar_acceleration, *this};
}
template <typename NumericType>
inline constexpr PlanarVelocity<NumericType> Time<NumericType>::operator*(
const PlanarAcceleration<NumericType>& planar_acceleration) const {
return PlanarVelocity<NumericType>{planar_acceleration, *this};
}
template <typename NumericType>
inline constexpr PlanarAcceleration<NumericType> ScalarAcceleration<NumericType>::operator*(
const PlanarDirection<NumericType>& planar_direction) const {
return PlanarAcceleration<NumericType>{*this, planar_direction};
}
template <typename NumericType>
inline constexpr PlanarAcceleration<NumericType> PlanarVelocity<NumericType>::operator*(
const Frequency<NumericType>& frequency) const {
return PlanarAcceleration<NumericType>{*this, frequency};
}
template <typename NumericType>
inline constexpr PlanarAcceleration<NumericType> Frequency<NumericType>::operator*(
const PlanarVelocity<NumericType>& planar_velocity) const {
return PlanarAcceleration<NumericType>{planar_velocity, *this};
}
template <typename NumericType>
inline constexpr PlanarAcceleration<NumericType> PlanarVelocity<NumericType>::operator/(
const Time<NumericType>& time) const {
return PlanarAcceleration<NumericType>{*this, time};
}
} // namespace PhQ
namespace std {
template <typename NumericType>
struct hash<PhQ::PlanarAcceleration<NumericType>> {
inline size_t operator()(const PhQ::PlanarAcceleration<NumericType>& planar_acceleration) const {
return hash<PhQ::PlanarVector<NumericType>>()(planar_acceleration.Value());
}
};
} // namespace std
#endif // PHQ_PLANAR_ACCELERATION_HPP