-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathStress.hpp
324 lines (268 loc) · 13.3 KB
/
Stress.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// Copyright © 2020-2024 Alexandre Coderre-Chabot
//
// This file is part of Physical Quantities (PhQ), a C++ library of physical quantities, physical
// models, and units of measure for scientific computing.
//
// Physical Quantities is hosted at:
// https://github.com/acodcha/phq
//
// Physical Quantities is licensed under the MIT License:
// https://mit-license.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute,
// sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// - The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef PHQ_STRESS_HPP
#define PHQ_STRESS_HPP
#include <array>
#include <cmath>
#include <cstddef>
#include <functional>
#include <ostream>
#include "DimensionalSymmetricDyad.hpp"
#include "Direction.hpp"
#include "PlanarDirection.hpp"
#include "PlanarTraction.hpp"
#include "ScalarStress.hpp"
#include "StaticPressure.hpp"
#include "SymmetricDyad.hpp"
#include "Traction.hpp"
#include "Unit/Pressure.hpp"
namespace PhQ {
/// \brief Three-dimensional Euclidean Cauchy stress symmetric dyadic tensor. Contains six
/// components in Cartesian coordinates: xx, xy = yx, xz = zx, yy, yz = zy, and zz. For the scalar
/// components or resultants of a Cauchy stress tensor, see PhQ::ScalarStress.
template <typename NumericType = double>
class Stress : public DimensionalSymmetricDyad<Unit::Pressure, NumericType> {
public:
/// \brief Default constructor. Constructs a stress tensor with an uninitialized value.
Stress() = default;
/// \brief Constructor. Constructs a stress tensor with a given value expressed in a given
/// pressure unit.
Stress(const SymmetricDyad<NumericType>& value, const Unit::Pressure unit)
: DimensionalSymmetricDyad<Unit::Pressure, NumericType>(value, unit) {}
/// \brief Constructor. Constructs a stress tensor from a given set of scalar stress components.
Stress(const ScalarStress<NumericType>& xx, const ScalarStress<NumericType>& xy,
const ScalarStress<NumericType>& xz, const ScalarStress<NumericType>& yy,
const ScalarStress<NumericType>& yz, const ScalarStress<NumericType>& zz)
: Stress<NumericType>(
{xx.Value(), xy.Value(), xz.Value(), yy.Value(), yz.Value(), zz.Value()}) {}
/// \brief Constructor. Constructs a stress tensor from a given static pressure using the
/// definition of stress due to pressure. Since pressure is compressive, the negative of the
/// static pressure contributes to the stress.
constexpr explicit Stress(const StaticPressure<NumericType>& static_pressure)
: Stress<NumericType>(
{static_cast<NumericType>(-1.0) * static_pressure.Value(), static_cast<NumericType>(0.0),
static_cast<NumericType>(0.0), static_cast<NumericType>(-1.0) * static_pressure.Value(),
static_cast<NumericType>(0.0),
static_cast<NumericType>(-1.0) * static_pressure.Value()}) {}
/// \brief Destructor. Destroys this stress tensor.
~Stress() noexcept = default;
/// \brief Copy constructor. Constructs a stress tensor by copying another one.
constexpr Stress(const Stress<NumericType>& other) = default;
/// \brief Copy constructor. Constructs a stress tensor by copying another one.
template <typename OtherNumericType>
explicit constexpr Stress(const Stress<OtherNumericType>& other)
: Stress(static_cast<SymmetricDyad<NumericType>>(other.Value())) {}
/// \brief Move constructor. Constructs a stress tensor by moving another one.
constexpr Stress(Stress<NumericType>&& other) noexcept = default;
/// \brief Copy assignment operator. Assigns this stress tensor by copying another one.
constexpr Stress<NumericType>& operator=(const Stress<NumericType>& other) = default;
/// \brief Copy assignment operator. Assigns this stress tensor by copying another one.
template <typename OtherNumericType>
constexpr Stress<NumericType>& operator=(const Stress<OtherNumericType>& other) {
this->value = static_cast<SymmetricDyad<NumericType>>(other.Value());
return *this;
}
/// \brief Move assignment operator. Assigns this stress tensor by moving another one.
constexpr Stress<NumericType>& operator=(Stress<NumericType>&& other) noexcept = default;
/// \brief Statically creates a stress tensor of zero.
[[nodiscard]] static constexpr Stress<NumericType> Zero() {
return Stress<NumericType>{SymmetricDyad<NumericType>::Zero()};
}
/// \brief Statically creates a stress tensor from the given xx, xy, xz, yy, yz, and zz Cartesian
/// components expressed in a given pressure unit.
template <Unit::Pressure Unit>
[[nodiscard]] static constexpr Stress<NumericType> Create(
const NumericType xx, const NumericType xy, const NumericType xz, const NumericType yy,
const NumericType yz, const NumericType zz) {
return Stress<NumericType>{ConvertStatically<Unit::Pressure, Unit, Standard<Unit::Pressure>>(
SymmetricDyad<NumericType>{xx, xy, xz, yy, yz, zz})};
}
/// \brief Statically creates a stress tensor from the given xx, xy, xz, yy, yz, and zz Cartesian
/// components expressed in a given pressure unit.
template <Unit::Pressure Unit>
[[nodiscard]] static constexpr Stress<NumericType> Create(
const std::array<NumericType, 6>& xx_xy_xz_yy_yz_zz) {
return Stress<NumericType>{ConvertStatically<Unit::Pressure, Unit, Standard<Unit::Pressure>>(
SymmetricDyad<NumericType>{xx_xy_xz_yy_yz_zz})};
}
/// \brief Statically creates a stress tensor with a given value expressed in a given pressure
/// unit.
template <Unit::Pressure Unit>
[[nodiscard]] static constexpr Stress<NumericType> Create(
const SymmetricDyad<NumericType>& value) {
return Stress<NumericType>{
ConvertStatically<Unit::Pressure, Unit, Standard<Unit::Pressure>>(value)};
}
/// \brief Returns the xx Cartesian component of this stress tensor.
[[nodiscard]] constexpr ScalarStress<NumericType> xx() const noexcept {
return ScalarStress<NumericType>{this->value.xx()};
}
/// \brief Returns the xy = yx Cartesian component of this stress tensor.
[[nodiscard]] constexpr ScalarStress<NumericType> xy() const noexcept {
return ScalarStress<NumericType>{this->value.xy()};
}
/// \brief Returns the xz = zx Cartesian component of this stress tensor.
[[nodiscard]] constexpr ScalarStress<NumericType> xz() const noexcept {
return ScalarStress<NumericType>{this->value.xz()};
}
/// \brief Returns the yx = xy Cartesian component of this stress tensor.
[[nodiscard]] constexpr ScalarStress<NumericType> yx() const noexcept {
return ScalarStress<NumericType>{this->value.yx()};
}
/// \brief Returns the yy Cartesian component of this stress tensor.
[[nodiscard]] constexpr ScalarStress<NumericType> yy() const noexcept {
return ScalarStress<NumericType>{this->value.yy()};
}
/// \brief Returns the yz = zy Cartesian component of this stress tensor.
[[nodiscard]] constexpr ScalarStress<NumericType> yz() const noexcept {
return ScalarStress<NumericType>{this->value.yz()};
}
/// \brief Returns the zx = xz Cartesian component of this stress tensor.
[[nodiscard]] constexpr ScalarStress<NumericType> zx() const noexcept {
return ScalarStress<NumericType>{this->value.zx()};
}
/// \brief Returns the zy = yz Cartesian component of this stress tensor.
[[nodiscard]] constexpr ScalarStress<NumericType> zy() const noexcept {
return ScalarStress<NumericType>{this->value.zy()};
}
/// \brief Returns the zz Cartesian component of this stress tensor.
[[nodiscard]] constexpr ScalarStress<NumericType> zz() const noexcept {
return ScalarStress<NumericType>{this->value.zz()};
}
/// \brief Creates a planar traction vector from this stress tensor and a given planar direction
/// using the definition of traction.
[[nodiscard]] constexpr PhQ::PlanarTraction<NumericType> PlanarTraction(
const PlanarDirection<NumericType>& direction) const {
return PhQ::PlanarTraction<NumericType>{*this, direction};
}
/// \brief Creates a traction vector from this stress tensor and a given direction using the
/// definition of traction.
[[nodiscard]] constexpr PhQ::Traction<NumericType> Traction(
const Direction<NumericType>& direction) const {
return PhQ::Traction<NumericType>{*this, direction};
}
/// \brief Computes the von Mises stress of this stress tensor using the von Mises yield
/// criterion.
[[nodiscard]] constexpr ScalarStress<NumericType> VonMises() const {
return ScalarStress<NumericType>{std::sqrt(
0.5
* (std::pow(this->value.xx() - this->value.yy(), 2)
+ std::pow(this->value.yy() - this->value.zz(), 2)
+ std::pow(this->value.zz() - this->value.xx(), 2)
+ 6.0
* (std::pow(this->value.xy(), 2) + std::pow(this->value.xz(), 2)
+ std::pow(this->value.yz(), 2))))};
}
constexpr Stress<NumericType> operator+(const Stress<NumericType>& stress) const {
return Stress<NumericType>{this->value + stress.value};
}
constexpr Stress<NumericType> operator-(const Stress<NumericType>& stress) const {
return Stress<NumericType>{this->value - stress.value};
}
constexpr Stress<NumericType> operator*(const NumericType number) const {
return Stress<NumericType>{this->value * number};
}
constexpr Stress<NumericType> operator/(const NumericType number) const {
return Stress<NumericType>{this->value / number};
}
constexpr void operator+=(const Stress<NumericType>& stress) noexcept {
this->value += stress.value;
}
constexpr void operator-=(const Stress<NumericType>& stress) noexcept {
this->value -= stress.value;
}
constexpr void operator*=(const NumericType number) noexcept {
this->value *= number;
}
constexpr void operator/=(const NumericType number) noexcept {
this->value /= number;
}
private:
/// \brief Constructor. Constructs a stress tensor with a given value expressed in the standard
/// pressure unit.
explicit constexpr Stress(const SymmetricDyad<NumericType>& value)
: DimensionalSymmetricDyad<Unit::Pressure, NumericType>(value) {}
};
template <typename NumericType>
inline constexpr bool operator==(
const Stress<NumericType>& left, const Stress<NumericType>& right) noexcept {
return left.Value() == right.Value();
}
template <typename NumericType>
inline constexpr bool operator!=(
const Stress<NumericType>& left, const Stress<NumericType>& right) noexcept {
return left.Value() != right.Value();
}
template <typename NumericType>
inline constexpr bool operator<(
const Stress<NumericType>& left, const Stress<NumericType>& right) noexcept {
return left.Value() < right.Value();
}
template <typename NumericType>
inline constexpr bool operator>(
const Stress<NumericType>& left, const Stress<NumericType>& right) noexcept {
return left.Value() > right.Value();
}
template <typename NumericType>
inline constexpr bool operator<=(
const Stress<NumericType>& left, const Stress<NumericType>& right) noexcept {
return left.Value() <= right.Value();
}
template <typename NumericType>
inline constexpr bool operator>=(
const Stress<NumericType>& left, const Stress<NumericType>& right) noexcept {
return left.Value() >= right.Value();
}
template <typename NumericType>
inline std::ostream& operator<<(std::ostream& stream, const Stress<NumericType>& stress) {
stream << stress.Print();
return stream;
}
template <typename NumericType>
inline constexpr Stress<NumericType> operator*(
const NumericType number, const Stress<NumericType>& stress) {
return stress * number;
}
template <typename NumericType>
inline constexpr PlanarTraction<NumericType>::PlanarTraction(
const Stress<NumericType>& stress, const PhQ::PlanarDirection<NumericType>& planar_direction)
: PlanarTraction<NumericType>(PlanarVector<NumericType>{stress.Value() * planar_direction}) {}
template <typename NumericType>
inline constexpr Traction<NumericType>::Traction(
const Stress<NumericType>& stress, const PhQ::Direction<NumericType>& direction)
: Traction<NumericType>(Vector<NumericType>{stress.Value() * direction}) {}
template <typename NumericType>
inline constexpr PhQ::Stress<NumericType> StaticPressure<NumericType>::Stress() const {
return PhQ::Stress<NumericType>{*this};
}
} // namespace PhQ
namespace std {
template <typename NumericType>
struct hash<PhQ::Stress<NumericType>> {
inline size_t operator()(const PhQ::Stress<NumericType>& stress) const {
return hash<PhQ::SymmetricDyad<NumericType>>()(stress.Value());
}
};
} // namespace std
#endif // PHQ_STRESS_HPP