-
Notifications
You must be signed in to change notification settings - Fork 8
/
DLT.py
128 lines (100 loc) · 3.91 KB
/
DLT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
def Normalization(nd, x):
'''
Normalization of coordinates (centroid to the origin and mean distance of sqrt(2 or 3).
Input
-----
nd: number of dimensions, 3 here
x: the data to be normalized (directions at different columns and points at rows)
Output
------
Tr: the transformation matrix (translation plus scaling)
x: the transformed data
'''
x = np.asarray(x)
m, s = np.mean(x, 0), np.std(x)
if nd == 2:
Tr = np.array([[s, 0, m[0]], [0, s, m[1]], [0, 0, 1]])
else:
Tr = np.array([[s, 0, 0, m[0]], [0, s, 0, m[1]], [0, 0, s, m[2]], [0, 0, 0, 1]])
Tr = np.linalg.inv(Tr)
x = np.dot( Tr, np.concatenate( (x.T, np.ones((1,x.shape[0]))) ) )
x = x[0:nd, :].T
return Tr, x
def DLTcalib(nd, xyz, uv):
'''
Camera calibration by DLT using known object points and their image points.
Input
-----
nd: dimensions of the object space, 3 here.
xyz: coordinates in the object 3D space.
uv: coordinates in the image 2D space.
The coordinates (x,y,z and u,v) are given as columns and the different points as rows.
There must be at least 6 calibration points for the 3D DLT.
Output
------
L: array of 11 parameters of the calibration matrix.
err: error of the DLT (mean residual of the DLT transformation in units of camera coordinates).
'''
if (nd != 3):
raise ValueError('%dD DLT unsupported.' %(nd))
# Converting all variables to numpy array
xyz = np.asarray(xyz)
uv = np.asarray(uv)
n = xyz.shape[0]
# Validating the parameters:
if uv.shape[0] != n:
raise ValueError('Object (%d points) and image (%d points) have different number of points.' %(n, uv.shape[0]))
if (xyz.shape[1] != 3):
raise ValueError('Incorrect number of coordinates (%d) for %dD DLT (it should be %d).' %(xyz.shape[1],nd,nd))
if (n < 6):
raise ValueError('%dD DLT requires at least %d calibration points. Only %d points were entered.' %(nd, 2*nd, n))
# Normalize the data to improve the DLT quality (DLT is dependent of the system of coordinates).
# This is relevant when there is a considerable perspective distortion.
# Normalization: mean position at origin and mean distance equals to 1 at each direction.
Txyz, xyzn = Normalization(nd, xyz)
Tuv, uvn = Normalization(2, uv)
A = []
for i in range(n):
x, y, z = xyzn[i, 0], xyzn[i, 1], xyzn[i, 2]
u, v = uvn[i, 0], uvn[i, 1]
A.append( [x, y, z, 1, 0, 0, 0, 0, -u * x, -u * y, -u * z, -u] )
A.append( [0, 0, 0, 0, x, y, z, 1, -v * x, -v * y, -v * z, -v] )
# Convert A to array
A = np.asarray(A)
# Find the 11 parameters:
U, S, V = np.linalg.svd(A)
# The parameters are in the last line of Vh and normalize them
L = V[-1, :] / V[-1, -1]
print(L)
# Camera projection matrix
H = L.reshape(3, nd + 1)
print(H)
# Denormalization
# pinv: Moore-Penrose pseudo-inverse of a matrix, generalized inverse of a matrix using its SVD
H = np.dot( np.dot( np.linalg.pinv(Tuv), H ), Txyz )
print(H)
H = H / H[-1, -1]
print(H)
L = H.flatten(0)
print(L)
# Mean error of the DLT (mean residual of the DLT transformation in units of camera coordinates):
uv2 = np.dot( H, np.concatenate( (xyz.T, np.ones((1, xyz.shape[0]))) ) )
uv2 = uv2 / uv2[2, :]
# Mean distance:
err = np.sqrt( np.mean(np.sum( (uv2[0:2, :].T - uv)**2, 1)) )
return L, err
def DLT():
# Known 3D coordinates
xyz = [[-875, 0, 9.755], [442, 0, 9.755], [1921, 0, 9.755], [2951, 0.5, 9.755], [-4132, 0.5, 23.618],
[-876, 0, 23.618]]
# Known pixel coordinates
uv = [[76, 706], [702, 706], [1440, 706], [1867, 706], [264, 523], [625, 523]]
nd = 3
P, err = DLTcalib(nd, xyz, uv)
print('Matrix')
print(P)
print('\nError')
print(err)
if __name__ == "__main__":
DLT()