-
Notifications
You must be signed in to change notification settings - Fork 42
/
Sous_Viduino.ino
759 lines (667 loc) · 16.6 KB
/
Sous_Viduino.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
//-------------------------------------------------------------------
//
// Sous Vide Controller
// Bill Earl - for Adafruit Industries
//
// Based on the Arduino PID and PID AutoTune Libraries
// by Brett Beauregard
//------------------------------------------------------------------
// PID Library
#include <PID_v1.h>
#include <PID_AutoTune_v0.h>
// Libraries for the Adafruit RGB/LCD Shield
#include <Wire.h>
#include <Adafruit_RGBLCDShield.h>
// Libraries for the DS18B20 Temperature Sensor
#include <OneWire.h>
#include <DallasTemperature.h>
// So we can save and retrieve settings
#include <EEPROM.h>
// ************************************************
// Pin definitions
// ************************************************
// Output Relay
#define RelayPin 7
// One-Wire Temperature Sensor
// (Use GPIO pins for power/ground to simplify the wiring)
#define ONE_WIRE_BUS 2
#define ONE_WIRE_PWR 3
#define ONE_WIRE_GND 4
// ************************************************
// PID Variables and constants
// ************************************************
//Define Variables we'll be connecting to
double Setpoint;
double Input;
double Output;
volatile long onTime = 0;
// pid tuning parameters
double Kp;
double Ki;
double Kd;
// EEPROM addresses for persisted data
const int SpAddress = 0;
const int KpAddress = 8;
const int KiAddress = 16;
const int KdAddress = 24;
//Specify the links and initial tuning parameters
PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);
// 10 second Time Proportional Output window
int WindowSize = 10000;
unsigned long windowStartTime;
// ************************************************
// Auto Tune Variables and constants
// ************************************************
byte ATuneModeRemember=2;
double aTuneStep=500;
double aTuneNoise=1;
unsigned int aTuneLookBack=20;
boolean tuning = false;
PID_ATune aTune(&Input, &Output);
// ************************************************
// DiSplay Variables and constants
// ************************************************
Adafruit_RGBLCDShield lcd = Adafruit_RGBLCDShield();
// These #defines make it easy to set the backlight color
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7
#define BUTTON_SHIFT BUTTON_SELECT
unsigned long lastInput = 0; // last button press
byte degree[8] = // define the degree symbol
{
B00110,
B01001,
B01001,
B00110,
B00000,
B00000,
B00000,
B00000
};
const int logInterval = 10000; // log every 10 seconds
long lastLogTime = 0;
// ************************************************
// States for state machine
// ************************************************
enum operatingState { OFF = 0, SETP, RUN, TUNE_P, TUNE_I, TUNE_D, AUTO};
operatingState opState = OFF;
// ************************************************
// Sensor Variables and constants
// Data wire is plugged into port 2 on the Arduino
// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);
// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);
// arrays to hold device address
DeviceAddress tempSensor;
// ************************************************
// Setup and diSplay initial screen
// ************************************************
void setup()
{
Serial.begin(9600);
// Initialize Relay Control:
pinMode(RelayPin, OUTPUT); // Output mode to drive relay
digitalWrite(RelayPin, LOW); // make sure it is off to start
// Set up Ground & Power for the sensor from GPIO pins
pinMode(ONE_WIRE_GND, OUTPUT);
digitalWrite(ONE_WIRE_GND, LOW);
pinMode(ONE_WIRE_PWR, OUTPUT);
digitalWrite(ONE_WIRE_PWR, HIGH);
// Initialize LCD DiSplay
lcd.begin(16, 2);
lcd.createChar(1, degree); // create degree symbol from the binary
lcd.setBacklight(VIOLET);
lcd.print(F(" Adafruit"));
lcd.setCursor(0, 1);
lcd.print(F(" Sous Vide!"));
// Start up the DS18B20 One Wire Temperature Sensor
sensors.begin();
if (!sensors.getAddress(tempSensor, 0))
{
lcd.setCursor(0, 1);
lcd.print(F("Sensor Error"));
}
sensors.setResolution(tempSensor, 12);
sensors.setWaitForConversion(false);
delay(3000); // Splash screen
// Initialize the PID and related variables
LoadParameters();
myPID.SetTunings(Kp,Ki,Kd);
myPID.SetSampleTime(1000);
myPID.SetOutputLimits(0, WindowSize);
// Run timer2 interrupt every 15 ms
TCCR2A = 0;
TCCR2B = 1<<CS22 | 1<<CS21 | 1<<CS20;
//Timer2 Overflow Interrupt Enable
TIMSK2 |= 1<<TOIE2;
}
// ************************************************
// Timer Interrupt Handler
// ************************************************
SIGNAL(TIMER2_OVF_vect)
{
if (opState == OFF)
{
digitalWrite(RelayPin, LOW); // make sure relay is off
}
else
{
DriveOutput();
}
}
// ************************************************
// Main Control Loop
//
// All state changes pass through here
// ************************************************
void loop()
{
// wait for button release before changing state
while(ReadButtons() != 0) {}
lcd.clear();
switch (opState)
{
case OFF:
Off();
break;
case SETP:
Tune_Sp();
break;
case RUN:
Run();
break;
case TUNE_P:
TuneP();
break;
case TUNE_I:
TuneI();
break;
case TUNE_D:
TuneD();
break;
}
}
// ************************************************
// Initial State - press RIGHT to enter setpoint
// ************************************************
void Off()
{
myPID.SetMode(MANUAL);
lcd.setBacklight(0);
digitalWrite(RelayPin, LOW); // make sure it is off
lcd.print(F(" Adafruit"));
lcd.setCursor(0, 1);
lcd.print(F(" Sous Vide!"));
uint8_t buttons = 0;
while(!(buttons & (BUTTON_RIGHT)))
{
buttons = ReadButtons();
}
// Prepare to transition to the RUN state
sensors.requestTemperatures(); // Start an asynchronous temperature reading
//turn the PID on
myPID.SetMode(AUTOMATIC);
windowStartTime = millis();
opState = RUN; // start control
}
// ************************************************
// Setpoint Entry State
// UP/DOWN to change setpoint
// RIGHT for tuning parameters
// LEFT for OFF
// SHIFT for 10x tuning
// ************************************************
void Tune_Sp()
{
lcd.setBacklight(VIOLET);
lcd.print(F("Set Temperature:"));
uint8_t buttons = 0;
while(true)
{
buttons = ReadButtons();
float increment = 0.1;
if (buttons & BUTTON_SHIFT)
{
increment *= 10;
}
if (buttons & BUTTON_LEFT)
{
opState = RUN;
return;
}
if (buttons & BUTTON_RIGHT)
{
opState = TUNE_P;
return;
}
if (buttons & BUTTON_UP)
{
Setpoint += increment;
delay(200);
}
if (buttons & BUTTON_DOWN)
{
Setpoint -= increment;
delay(200);
}
if ((millis() - lastInput) > 3000) // return to RUN after 3 seconds idle
{
opState = RUN;
return;
}
lcd.setCursor(0,1);
lcd.print(Setpoint);
lcd.print(" ");
DoControl();
}
}
// ************************************************
// Proportional Tuning State
// UP/DOWN to change Kp
// RIGHT for Ki
// LEFT for setpoint
// SHIFT for 10x tuning
// ************************************************
void TuneP()
{
lcd.setBacklight(VIOLET);
lcd.print(F("Set Kp"));
uint8_t buttons = 0;
while(true)
{
buttons = ReadButtons();
float increment = 1.0;
if (buttons & BUTTON_SHIFT)
{
increment *= 10;
}
if (buttons & BUTTON_LEFT)
{
opState = SETP;
return;
}
if (buttons & BUTTON_RIGHT)
{
opState = TUNE_I;
return;
}
if (buttons & BUTTON_UP)
{
Kp += increment;
delay(200);
}
if (buttons & BUTTON_DOWN)
{
Kp -= increment;
delay(200);
}
if ((millis() - lastInput) > 3000) // return to RUN after 3 seconds idle
{
opState = RUN;
return;
}
lcd.setCursor(0,1);
lcd.print(Kp);
lcd.print(" ");
DoControl();
}
}
// ************************************************
// Integral Tuning State
// UP/DOWN to change Ki
// RIGHT for Kd
// LEFT for Kp
// SHIFT for 10x tuning
// ************************************************
void TuneI()
{
lcd.setBacklight(VIOLET);
lcd.print(F("Set Ki"));
uint8_t buttons = 0;
while(true)
{
buttons = ReadButtons();
float increment = 0.01;
if (buttons & BUTTON_SHIFT)
{
increment *= 10;
}
if (buttons & BUTTON_LEFT)
{
opState = TUNE_P;
return;
}
if (buttons & BUTTON_RIGHT)
{
opState = TUNE_D;
return;
}
if (buttons & BUTTON_UP)
{
Ki += increment;
delay(200);
}
if (buttons & BUTTON_DOWN)
{
Ki -= increment;
delay(200);
}
if ((millis() - lastInput) > 3000) // return to RUN after 3 seconds idle
{
opState = RUN;
return;
}
lcd.setCursor(0,1);
lcd.print(Ki);
lcd.print(" ");
DoControl();
}
}
// ************************************************
// Derivative Tuning State
// UP/DOWN to change Kd
// RIGHT for setpoint
// LEFT for Ki
// SHIFT for 10x tuning
// ************************************************
void TuneD()
{
lcd.setBacklight(VIOLET);
lcd.print(F("Set Kd"));
uint8_t buttons = 0;
while(true)
{
buttons = ReadButtons();
float increment = 0.01;
if (buttons & BUTTON_SHIFT)
{
increment *= 10;
}
if (buttons & BUTTON_LEFT)
{
opState = TUNE_I;
return;
}
if (buttons & BUTTON_RIGHT)
{
opState = RUN;
return;
}
if (buttons & BUTTON_UP)
{
Kd += increment;
delay(200);
}
if (buttons & BUTTON_DOWN)
{
Kd -= increment;
delay(200);
}
if ((millis() - lastInput) > 3000) // return to RUN after 3 seconds idle
{
opState = RUN;
return;
}
lcd.setCursor(0,1);
lcd.print(Kd);
lcd.print(" ");
DoControl();
}
}
// ************************************************
// PID COntrol State
// SHIFT and RIGHT for autotune
// RIGHT - Setpoint
// LEFT - OFF
// ************************************************
void Run()
{
// set up the LCD's number of rows and columns:
lcd.print(F("Sp: "));
lcd.print(Setpoint);
lcd.write(1);
lcd.print(F("C : "));
SaveParameters();
myPID.SetTunings(Kp,Ki,Kd);
uint8_t buttons = 0;
while(true)
{
setBacklight(); // set backlight based on state
buttons = ReadButtons();
if ((buttons & BUTTON_SHIFT)
&& (buttons & BUTTON_RIGHT)
&& (abs(Input - Setpoint) < 0.5)) // Should be at steady-state
{
StartAutoTune();
}
else if (buttons & BUTTON_RIGHT)
{
opState = SETP;
return;
}
else if (buttons & BUTTON_LEFT)
{
opState = OFF;
return;
}
DoControl();
lcd.setCursor(0,1);
lcd.print(Input);
lcd.write(1);
lcd.print(F("C : "));
float pct = map(Output, 0, WindowSize, 0, 1000);
lcd.setCursor(10,1);
lcd.print(F(" "));
lcd.setCursor(10,1);
lcd.print(pct/10);
//lcd.print(Output);
lcd.print("%");
lcd.setCursor(15,0);
if (tuning)
{
lcd.print("T");
}
else
{
lcd.print(" ");
}
// periodically log to serial port in csv format
if (millis() - lastLogTime > logInterval)
{
lastLogTime = millis();
Serial.print(Input);
Serial.print(",");
Serial.println(Output);
}
delay(100);
}
}
// ************************************************
// Execute the control loop
// ************************************************
void DoControl()
{
// Read the input:
if (sensors.isConversionAvailable(0))
{
Input = sensors.getTempC(tempSensor);
sensors.requestTemperatures(); // prime the pump for the next one - but don't wait
}
if (tuning) // run the auto-tuner
{
if (aTune.Runtime()) // returns 'true' when done
{
FinishAutoTune();
}
}
else // Execute control algorithm
{
myPID.Compute();
}
// Time Proportional relay state is updated regularly via timer interrupt.
onTime = Output;
}
// ************************************************
// Called by ISR every 15ms to drive the output
// ************************************************
void DriveOutput()
{
long now = millis();
// Set the output
// "on time" is proportional to the PID output
if(now - windowStartTime>WindowSize)
{ //time to shift the Relay Window
windowStartTime += WindowSize;
}
if((onTime > 100) && (onTime > (now - windowStartTime)))
{
digitalWrite(RelayPin,HIGH);
}
else
{
digitalWrite(RelayPin,LOW);
}
}
// ************************************************
// Set Backlight based on the state of control
// ************************************************
void setBacklight()
{
if (tuning)
{
lcd.setBacklight(VIOLET); // Tuning Mode
}
else if (abs(Input - Setpoint) > 1.0)
{
lcd.setBacklight(RED); // High Alarm - off by more than 1 degree
}
else if (abs(Input - Setpoint) > 0.2)
{
lcd.setBacklight(YELLOW); // Low Alarm - off by more than 0.2 degrees
}
else
{
lcd.setBacklight(WHITE); // We're on target!
}
}
// ************************************************
// Start the Auto-Tuning cycle
// ************************************************
void StartAutoTune()
{
// REmember the mode we were in
ATuneModeRemember = myPID.GetMode();
// set up the auto-tune parameters
aTune.SetNoiseBand(aTuneNoise);
aTune.SetOutputStep(aTuneStep);
aTune.SetLookbackSec((int)aTuneLookBack);
tuning = true;
}
// ************************************************
// Return to normal control
// ************************************************
void FinishAutoTune()
{
tuning = false;
// Extract the auto-tune calculated parameters
Kp = aTune.GetKp();
Ki = aTune.GetKi();
Kd = aTune.GetKd();
// Re-tune the PID and revert to normal control mode
myPID.SetTunings(Kp,Ki,Kd);
myPID.SetMode(ATuneModeRemember);
// Persist any changed parameters to EEPROM
SaveParameters();
}
// ************************************************
// Check buttons and time-stamp the last press
// ************************************************
uint8_t ReadButtons()
{
uint8_t buttons = lcd.readButtons();
if (buttons != 0)
{
lastInput = millis();
}
return buttons;
}
// ************************************************
// Save any parameter changes to EEPROM
// ************************************************
void SaveParameters()
{
if (Setpoint != EEPROM_readDouble(SpAddress))
{
EEPROM_writeDouble(SpAddress, Setpoint);
}
if (Kp != EEPROM_readDouble(KpAddress))
{
EEPROM_writeDouble(KpAddress, Kp);
}
if (Ki != EEPROM_readDouble(KiAddress))
{
EEPROM_writeDouble(KiAddress, Ki);
}
if (Kd != EEPROM_readDouble(KdAddress))
{
EEPROM_writeDouble(KdAddress, Kd);
}
}
// ************************************************
// Load parameters from EEPROM
// ************************************************
void LoadParameters()
{
// Load from EEPROM
Setpoint = EEPROM_readDouble(SpAddress);
Kp = EEPROM_readDouble(KpAddress);
Ki = EEPROM_readDouble(KiAddress);
Kd = EEPROM_readDouble(KdAddress);
// Use defaults if EEPROM values are invalid
if (isnan(Setpoint))
{
Setpoint = 60;
}
if (isnan(Kp))
{
Kp = 850;
}
if (isnan(Ki))
{
Ki = 0.5;
}
if (isnan(Kd))
{
Kd = 0.1;
}
}
// ************************************************
// Write floating point values to EEPROM
// ************************************************
void EEPROM_writeDouble(int address, double value)
{
byte* p = (byte*)(void*)&value;
for (int i = 0; i < sizeof(value); i++)
{
EEPROM.write(address++, *p++);
}
}
// ************************************************
// Read floating point values from EEPROM
// ************************************************
double EEPROM_readDouble(int address)
{
double value = 0.0;
byte* p = (byte*)(void*)&value;
for (int i = 0; i < sizeof(value); i++)
{
*p++ = EEPROM.read(address++);
}
return value;
}