-
Notifications
You must be signed in to change notification settings - Fork 14
/
model_2.py
424 lines (354 loc) · 20.6 KB
/
model_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
# encoding=utf-8
# Project: transfer_cws
# Author: xingjunjie
# Create Time: 07/11/2017 11:04 AM on PyCharm
import tensorflow as tf
from utils import Progbar
from data_utils import pad_sequences, minibatches, get_chunks, minibatches_evaluate
import numpy as np
import os
from functools import partial
from penalty import MKL, CMD, MMD, gaussian_kernel_matrix, _de_pad
class Model(object):
def __init__(self, args, ntags, nwords, ntarwords=None, src_embedding=None,
target_embedding=None, logger=None, src_batch_size=None):
self.args = args
self.src_embedding = src_embedding
self.target_embedding = target_embedding
self.ntags = ntags
self.nwords = nwords
self.ntarwords = ntarwords
self.logger = logger
self.init_lr = args.learning_rate
self.src_batch_size = src_batch_size
self.target_batch_size = self.args.batch_size - self.src_batch_size
self.describe = "shared lstm only, with mmd, model-2"
self.initializer = tf.contrib.layers.xavier_initializer()
self.l2_regularizer = tf.contrib.layers.l2_regularizer(self.args.l2_ratio)
self.info = {
'dev': [],
'train': [],
'loss': [],
'test': None
}
def add_placeholder(self):
with tf.device('/gpu:{:d}'.format(self.args.gpu_device)):
self.batch_size = tf.placeholder(tf.int32, shape=[])
# shape = [batch size, max length of sequence in batch]
self.src_word_ids = tf.placeholder(tf.int32, shape=[None, None])
# shape = [batch size, max length of sequence in batch]
self.target_word_ids = tf.placeholder(tf.int32, shape=[None, None])
# shape = [batch size]
self.sequence_lengths = tf.placeholder(tf.int32, shape=[None])
# shape = [batch size]
self.src_sequence_lengths = tf.placeholder(tf.int32, shape=[None])
# shape = [batch size]
self.target_sequence_lengths = tf.placeholder(tf.int32, shape=[None])
# shape = [batch size, max length of sequence in batch]
self.labels = tf.placeholder(tf.int32, shape=[None, None])
# hyper parameters
self.dropout = tf.placeholder(tf.float32, shape=[])
self.lr = tf.placeholder(tf.float32, shape=[])
self.is_training = tf.placeholder(tf.bool)
def get_feed_dict(self, sentences, labels, target_words, lr=None, dropout=None, src_batch_size=None, mode="all",
is_training=True):
if mode == 'all':
all_words_ids, sequence_lengths = pad_sequences(sentences + target_words, pad_tok=0)
words_ids = all_words_ids[:src_batch_size] + [[0] * len(all_words_ids[0])] * (
self.args.batch_size - src_batch_size)
src_sequence_lengths = sequence_lengths[:src_batch_size] + [0] * (self.args.batch_size - src_batch_size)
target_words_ids = [[0] * len(all_words_ids[0])] * src_batch_size + all_words_ids[src_batch_size:]
target_sequence_lengths = [0] * src_batch_size + sequence_lengths[src_batch_size:]
feed_dict = {
self.src_word_ids: words_ids,
self.src_sequence_lengths: src_sequence_lengths,
self.target_word_ids: target_words_ids,
self.target_sequence_lengths: target_sequence_lengths,
self.sequence_lengths: sequence_lengths,
self.batch_size: self.args.batch_size,
self.is_training: is_training,
}
elif mode == 'target':
target_words_ids, target_sequence_lengths = pad_sequences(target_words, pad_tok=0)
sequence_lengths = target_sequence_lengths
feed_dict = {
self.src_word_ids: np.zeros_like(target_words_ids),
self.src_sequence_lengths: np.zeros_like(target_sequence_lengths),
self.target_word_ids: target_words_ids,
self.target_sequence_lengths: target_sequence_lengths,
self.sequence_lengths: target_sequence_lengths,
self.batch_size: self.args.batch_size,
self.is_training: is_training,
}
if labels is not None:
labels, _ = pad_sequences(labels, 0)
feed_dict[self.labels] = labels
if lr is not None:
feed_dict[self.lr] = lr
if dropout is not None:
feed_dict[self.dropout] = dropout
return feed_dict, sequence_lengths
def add_src_word_embeddings_op(self):
with tf.device('/gpu:{:d}'.format(self.args.gpu_device)):
with tf.variable_scope("src_word"):
_word_embeddings = tf.get_variable('embedding', shape=[self.nwords, self.args.embedding_size],
initializer=self.initializer,
trainable=not self.args.disable_src_embed_training,
regularizer=self.l2_regularizer)
word_embeddings = tf.nn.embedding_lookup(_word_embeddings, self.src_word_ids)
if self.args.share_embed:
target_word_embeddings = tf.nn.embedding_lookup(_word_embeddings, self.target_word_ids)
self.target_word_embeddings = tf.nn.dropout(target_word_embeddings, self.dropout)
self.src_word_embeddings = tf.nn.dropout(word_embeddings, self.dropout)
def add_target_word_embeddings_op(self):
with tf.device('/gpu:{:d}'.format(self.args.gpu_device)):
with tf.variable_scope("target_word"):
_word_embeddings = tf.get_variable('embedding', shape=[self.ntarwords, self.args.embedding_size],
initializer=self.initializer, regularizer=self.l2_regularizer)
word_embeddings = tf.nn.embedding_lookup(_word_embeddings, self.target_word_ids)
if self.args.use_pretrain_target:
pre_train_size = self.target_embedding.shape[0]
self.target_embedding_init = _word_embeddings[:pre_train_size].assign(self.target_embedding)
self.target_word_embeddings = tf.nn.dropout(word_embeddings, self.dropout)
def add_shared_lstm(self):
with tf.device('/gpu:{:d}'.format(self.args.gpu_device)):
with tf.variable_scope('lstm'):
cell_fw = tf.contrib.rnn.LSTMCell(self.args.lstm_hidden)
cell_bw = tf.contrib.rnn.LSTMCell(self.args.lstm_hidden)
(output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn(
cell_fw, cell_bw, self.src_word_embeddings, sequence_length=self.src_sequence_lengths,
dtype=tf.float32)
outout = tf.concat([output_fw, output_bw], axis=-1)
self.src_after_shared = tf.nn.dropout(outout, self.dropout)
(e_output_fw, e_output_bw), _ = tf.nn.bidirectional_dynamic_rnn(
cell_fw, cell_bw, self.target_word_embeddings, sequence_length=self.target_sequence_lengths,
dtype=tf.float32)
e_outout = tf.concat([e_output_fw, e_output_bw], axis=-1)
self.target_after_shared = tf.nn.dropout(e_outout, self.dropout)
with tf.variable_scope('lstm_linear'):
W = tf.get_variable("W", shape=[2 * self.args.lstm_hidden, self.ntags],
dtype=tf.float32, initializer=self.initializer, regularizer=self.l2_regularizer)
b = tf.get_variable("b", shape=[self.ntags], dtype=tf.float32,
initializer=self.initializer, regularizer=self.l2_regularizer)
ntime_steps = tf.shape(self.src_after_shared)[1]
output = tf.reshape(self.src_after_shared, [-1, 2 * self.args.lstm_hidden])
pred = tf.matmul(output, W) + b
self.src_logits = tf.reshape(pred, [-1, ntime_steps, self.ntags])
ntime_steps = tf.shape(self.target_after_shared)[1]
output = tf.reshape(self.target_after_shared, [-1, 2 * self.args.lstm_hidden])
pred = tf.matmul(output, W) + b
self.target_logits = tf.reshape(pred, [-1, ntime_steps, self.ntags])
def add_loss_op(self):
with tf.device('/gpu:{:d}'.format(self.args.gpu_device)):
# CRF loss
with tf.variable_scope('src_crf'):
self.src_log_likelihood, self.src_transition_params = tf.contrib.crf.crf_log_likelihood(
self.src_logits, self.labels, self.src_sequence_lengths
)
with tf.variable_scope('target_crf'):
self.target_log_likelihood, self.target_transition_params = tf.contrib.crf.crf_log_likelihood(
self.target_logits, self.labels, self.target_sequence_lengths
)
self.src_crf_loss = tf.reduce_mean(-self.src_log_likelihood[:self.src_batch_size])
self.target_crf_loss = tf.reduce_mean(-self.target_log_likelihood[self.src_batch_size:])
# MMD loss
if self.args.penalty_ratio > 0:
self.src_depad = _de_pad(self.src_after_shared, self.src_sequence_lengths)
self.target_depad = _de_pad(self.target_after_shared, self.target_sequence_lengths)
if self.args.penalty == 'mmd':
with tf.name_scope('mmd'):
sigmas = [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, 1e4, 1e5,
1e6]
gaussian_kernel = partial(gaussian_kernel_matrix, sigmas=tf.constant(sigmas))
loss_value = MMD(self.src_depad, self.target_depad, kernel=gaussian_kernel)
mmd_loss = tf.maximum(1e-4, loss_value)
self.penalty_loss = self.args.penalty_ratio * mmd_loss
elif self.args.penalty == 'kl':
self.src_depad_sm = tf.nn.softmax(self.src_depad)
self.target_depad_sm = tf.nn.softmax(self.target_depad)
self.kl_loss = MKL(self.src_depad_sm, self.target_depad_sm)
self.penalty_loss = self.args.penalty_ratio * self.kl_loss
elif self.args.penalty == 'cmd':
self.cmd_loss = CMD(self.src_depad, self.target_depad, 5)
self.penalty_loss = self.args.penalty_ratio * self.cmd_loss
else:
self.logger.critical("Penalty Type Invalid.")
temp = self.src_crf_loss + self.target_crf_loss + self.penalty_loss
else:
temp = self.src_crf_loss + self.target_crf_loss
if self.args.use_l2:
self.l2_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
temp1 = temp + self.l2_loss
else:
temp1 = temp
if not self.args.share_crf:
self.crf_l2_loss = tf.nn.l2_loss(
self.target_transition_params - self.src_transition_params) * self.args.crf_l2_ratio
temp2 = temp1 + self.crf_l2_loss
else:
temp2 = temp1
self.loss = temp2
def add_train_op(self):
with tf.device('/gpu:{:d}'.format(self.args.gpu_device)):
with tf.variable_scope('train'):
if self.args.optim.lower() == 'adam':
optimizer = tf.train.AdamOptimizer(self.lr)
elif self.args.optim.lower() == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(self.lr)
else:
raise NotImplementedError("Unknown optim {}".format(self.args.optim))
self.train_op = optimizer.minimize(self.loss)
def add_init_op(self):
self.init = tf.global_variables_initializer()
def build(self):
self.add_placeholder()
self.add_src_word_embeddings_op()
if not self.args.share_embed:
self.add_target_word_embeddings_op()
self.add_shared_lstm()
self.add_loss_op()
self.add_train_op()
self.add_init_op()
self.logger.critical("Model info: {}".format(self.describe))
def predict_batch(self, sess, words=None, target_words=None, mode='target', is_training=True):
feed_dict, sequence_lengths = self.get_feed_dict(words, None, target_words=target_words, dropout=1.0, mode=mode,
is_training=is_training)
viterbi_sequences = []
logits, transition_params = sess.run([self.target_logits, self.target_transition_params],
feed_dict=feed_dict)
for logit, sequence_length in zip(logits, sequence_lengths):
logit = logit[:sequence_length]
viterbi_sequence, viterbi_score = tf.contrib.crf.viterbi_decode(
logit, transition_params
)
viterbi_sequences += [viterbi_sequence]
return viterbi_sequences, sequence_lengths
def run_epoch(self, sess, src_train, src_dev, tags, target_train, target_dev, n_epoch_noimprove):
nbatces = (len(target_train) + self.target_batch_size - 1) // self.target_batch_size
prog = Progbar(target=nbatces)
total_loss = 0
src = minibatches(src_train, self.src_batch_size, circle=True)
target = minibatches(target_train, self.target_batch_size, circle=True)
for i in range(nbatces):
src_words, src_tags, _ = next(src)
target_words, target_tags, _ = next(target)
labels = src_tags + target_tags
feed_dict, _ = self.get_feed_dict(src_words, labels, target_words, self.args.learning_rate,
self.args.dropout, self.src_batch_size, is_training=True)
if self.args.penalty_ratio > 0:
_, src_crf_loss, target_crf_loss, penalty_loss, loss = sess.run(
[self.train_op, self.src_crf_loss, self.target_crf_loss, self.penalty_loss, self.loss],
feed_dict=feed_dict)
try:
prog.update(i + 1,
[("train loss", loss[0]), ("src crf", src_crf_loss), ("target crf", target_crf_loss),
("{} loss".format(self.args.penalty), penalty_loss)])
except:
prog.update(i + 1,
[("train loss", loss), ("src crf", src_crf_loss), ("target crf", target_crf_loss),
("{} loss".format(self.args.penalty), penalty_loss)])
else:
_, src_crf_loss, target_crf_loss, loss = sess.run(
[self.train_op, self.src_crf_loss, self.target_crf_loss, self.loss],
feed_dict=feed_dict)
try:
prog.update(i + 1,
[("train loss", loss[0]), ("src crf", src_crf_loss), ("target crf", target_crf_loss)])
except:
prog.update(i + 1,
[("train loss", loss), ("src crf", src_crf_loss), ("target crf", target_crf_loss)])
total_loss += loss
self.info['loss'] += [total_loss / nbatces]
acc, p, r, f1 = self.run_evaluate(sess, target_train, tags, target='target')
self.info['dev'].append((acc, p, r, f1))
self.logger.critical(
"target train acc {:04.2f} f1 {:04.2f} p {:04.2f} r {:04.2f}".format(100 * acc, 100 * f1, 100 * p,
100 * r))
acc, p, r, f1 = self.run_evaluate(sess, target_dev, tags, target='target')
self.info['dev'].append((acc, p, r, f1))
self.logger.info(
"dev acc {:04.2f} f1 {:04.2f} p {:04.2f} r {:04.2f}".format(100 * acc, 100 * f1, 100 * p, 100 * r))
return acc, p, r, f1
def run_evaluate(self, sess, test, tags, target='src'):
accs = []
correct_preds, total_correct, total_preds = 0., 0., 0.
nbatces = (len(test) + self.args.batch_size - 1) // self.args.batch_size
prog = Progbar(target=nbatces)
for i, (words, labels, target_words) in enumerate(minibatches(test, self.args.batch_size)):
if target == 'src':
labels_pred, sequence_lengths = self.predict_batch(sess, words, mode=target, is_training=False)
else:
labels_pred, sequence_lengths = self.predict_batch(sess, None, words, mode=target, is_training=False)
for lab, label_pred, length in zip(labels, labels_pred, sequence_lengths):
lab = lab[:length]
lab_pred = label_pred[:length]
accs += [a == b for (a, b) in zip(lab, lab_pred)]
lab_chunks = set(get_chunks(lab, tags))
lab_pred_chunks = set(get_chunks(lab_pred, tags))
correct_preds += len(lab_chunks & lab_pred_chunks)
total_preds += len(lab_pred_chunks)
total_correct += len(lab_chunks)
prog.update(i + 1)
p = correct_preds / total_preds if correct_preds > 0 else 0
r = correct_preds / total_correct if correct_preds > 0 else 0
f1 = 2 * p * r / (p + r) if correct_preds > 0 else 0
acc = np.mean(accs)
return acc, p, r, f1
def predict(self, sess, test, id_to_tag, id_to_word):
nbatces = (len(test) + self.args.batch_size - 1) // self.args.batch_size
prog = Progbar(target=nbatces)
with open(self.args.predict_out, 'w+', encoding='utf8') as outfile:
for i, (words, target_words, true_words) in enumerate(minibatches_evaluate(test, self.args.batch_size)):
labels_pred, sequence_lengths = self.predict_batch(sess, words)
for word, true_word, label_pred, length in zip(words, true_words, labels_pred, sequence_lengths):
true_word = true_word[:length]
lab_pred = label_pred[:length]
for item, tag in zip(true_word, lab_pred):
outfile.write(item + '\t' + id_to_tag[tag] + '\n')
outfile.write('\n')
prog.update(i + 1)
def train(self, src_train, src_dev, tags, target_train, target_dev, src_batch_size, target_batch_size):
best_score = -1e-4
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
tf_config.gpu_options.per_process_gpu_memory_fraction = self.args.gpu_frac
tf_config.allow_soft_placement = True
with tf.Session(config=tf_config) as sess:
sess.run(self.init)
if self.args.use_pretrain_src:
sess.run(self.src_embedding_init)
if self.args.use_pretrain_target and self.args.flag == 1:
sess.run(self.target_embedding_init)
nepoch_no_imprv = 0
for epoch in range(self.args.epoch):
self.logger.info("Epoch : {}/{}".format(epoch + 1, self.args.epoch))
acc, p, r, f1 = self.run_epoch(sess, src_train, src_dev, tags, target_train, target_dev,
nepoch_no_imprv)
self.args.learning_rate *= self.args.lr_decay
if f1 > best_score:
nepoch_no_imprv = 0
if not os.path.exists(self.args.model_output):
os.makedirs(self.args.model_output)
saver = tf.train.Saver()
saver.save(sess, self.args.model_output)
best_score = f1
self.logger.info("New best score: {}".format(f1))
else:
nepoch_no_imprv += 1
if nepoch_no_imprv >= self.args.nepoch_no_imprv:
self.logger.info("Early stopping {} epochs without improvement".format(nepoch_no_imprv))
break
return self.evaluate(target_dev, tags, target='target')
def evaluate(self, test, tags, target='src'):
saver = tf.train.Saver()
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
tf_config.gpu_options.per_process_gpu_memory_fraction = self.args.gpu_frac
tf_config.allow_soft_placement = True
with tf.Session(config=tf_config) as sess:
self.logger.info("Testing model over test set")
saver.restore(sess, self.args.model_output)
acc, p, r, f1 = self.run_evaluate(sess, test, tags, target=target)
self.info['test'] = (acc, p, r, f1)
self.logger.info("- test acc {:04.2f} - f1 {:04.2f}".format(100 * acc, 100 * f1))
return acc, p, r, f1