From 24a20f804390c6ab969c28abbe999c940f8d6a56 Mon Sep 17 00:00:00 2001 From: prakhar Date: Wed, 27 Apr 2022 21:29:52 +0530 Subject: [PATCH 1/2] runtime feature refinement initial commit --- README.md | 6 + bin/predict.py | 54 ++-- configs/prediction/default.yaml | 10 + saicinpainting/evaluation/refinement.py | 314 ++++++++++++++++++++++++ 4 files changed, 360 insertions(+), 24 deletions(-) create mode 100644 saicinpainting/evaluation/refinement.py diff --git a/README.md b/README.md index 38e3c3f3..d000d8bf 100644 --- a/README.md +++ b/README.md @@ -145,6 +145,12 @@ bash docker/2_predict.sh $(pwd)/big-lama $(pwd)/LaMa_test_images $(pwd)/output d ``` Docker cuda: TODO +**4. Predict with Refinement** + +On the host machine: + + python3 bin/predict.py refine=True model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output + # Train and Eval ⚠️ Warning: The training is not fully tested yet, e.g., did not re-training after refactoring ⚠️ diff --git a/bin/predict.py b/bin/predict.py index 726e0667..4eaf7058 100755 --- a/bin/predict.py +++ b/bin/predict.py @@ -12,7 +12,7 @@ import traceback from saicinpainting.evaluation.utils import move_to_device - +from saicinpainting.evaluation.refinement import refine_predict os.environ['OMP_NUM_THREADS'] = '1' os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' @@ -56,34 +56,40 @@ def main(predict_config: OmegaConf): predict_config.model.checkpoint) model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu') model.freeze() - model.to(device) + if not predict_config.get('refine', False): + model.to(device) if not predict_config.indir.endswith('/'): predict_config.indir += '/' dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset) - with torch.no_grad(): - for img_i in tqdm.trange(len(dataset)): - mask_fname = dataset.mask_filenames[img_i] - cur_out_fname = os.path.join( - predict_config.outdir, - os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext - ) - os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) - - batch = move_to_device(default_collate([dataset[img_i]]), device) - batch['mask'] = (batch['mask'] > 0) * 1 - batch = model(batch) - cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy() - - unpad_to_size = batch.get('unpad_to_size', None) - if unpad_to_size is not None: - orig_height, orig_width = unpad_to_size - cur_res = cur_res[:orig_height, :orig_width] - - cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') - cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) - cv2.imwrite(cur_out_fname, cur_res) + for img_i in tqdm.trange(len(dataset)): + mask_fname = dataset.mask_filenames[img_i] + cur_out_fname = os.path.join( + predict_config.outdir, + os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext + ) + os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) + batch = default_collate([dataset[img_i]]) + if predict_config.get('refine', False): + assert 'unpad_to_size' in batch, "Unpadded size is required for the refinement" + cur_res = refine_predict(batch, model, **predict_config.refiner) + cur_res = cur_res[0].permute(1,2,0).detach().cpu().numpy() + else: + with torch.no_grad(): + batch = move_to_device(batch, device) + batch['mask'] = (batch['mask'] > 0) * 1 + batch = model(batch) + cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy() + unpad_to_size = batch.get('unpad_to_size', None) + if unpad_to_size is not None: + orig_height, orig_width = unpad_to_size + cur_res = cur_res[:orig_height, :orig_width] + + cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') + cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) + cv2.imwrite(cur_out_fname, cur_res) + except KeyboardInterrupt: LOGGER.warning('Interrupted by user') except Exception as ex: diff --git a/configs/prediction/default.yaml b/configs/prediction/default.yaml index 3c512293..80fa69b2 100644 --- a/configs/prediction/default.yaml +++ b/configs/prediction/default.yaml @@ -12,3 +12,13 @@ dataset: device: cuda out_key: inpainted + +refine: False # refiner will only run if this is True +refiner: + gpu_ids: 0,1 # the GPU ids of the machine to use. If only single GPU, use: "0," + modulo: ${dataset.pad_out_to_modulo} + n_iters: 15 # number of iterations of refinement for each scale + lr: 0.002 # learning rate + min_side: 512 # all sides of image on all scales should be >= min_side / sqrt(2) + max_scales: 3 # max number of downscaling scales for the image-mask pyramid + px_budget: 1800000 # pixels budget. Any image will be resized to satisfy height*width <= px_budget \ No newline at end of file diff --git a/saicinpainting/evaluation/refinement.py b/saicinpainting/evaluation/refinement.py new file mode 100644 index 00000000..d9d3cbac --- /dev/null +++ b/saicinpainting/evaluation/refinement.py @@ -0,0 +1,314 @@ +import torch +import torch.nn as nn +from torch.optim import Adam, SGD +from kornia.filters import gaussian_blur2d +from kornia.geometry.transform import resize +from kornia.morphology import erosion +from torch.nn import functional as F +import numpy as np +import cv2 + +from saicinpainting.evaluation.data import pad_tensor_to_modulo +from saicinpainting.evaluation.utils import move_to_device +from saicinpainting.training.modules.ffc import FFCResnetBlock +from saicinpainting.training.modules.pix2pixhd import ResnetBlock + +from tqdm import tqdm + + +def _pyrdown(im : torch.Tensor, downsize : tuple=None): + """downscale the image""" + if downsize is None: + downsize = (im.shape[2]//2, im.shape[3]//2) + assert im.shape[1] == 3, "Expected shape for the input to be (n,3,height,width)" + im = gaussian_blur2d(im, kernel_size=(5,5), sigma=(1.0,1.0)) + im = F.interpolate(im, size=downsize, mode='bilinear', align_corners=False) + return im + +def _pyrdown_mask(mask : torch.Tensor, downsize : tuple=None, eps : float=1e-8, blur_mask : bool=True, round_up : bool=True): + """downscale the mask tensor + + Parameters + ---------- + mask : torch.Tensor + mask of size (B, 1, H, W) + downsize : tuple, optional + size to downscale to. If None, image is downscaled to half, by default None + eps : float, optional + threshold value for binarizing the mask, by default 1e-8 + blur_mask : bool, optional + if True, apply gaussian filter before downscaling, by default True + round_up : bool, optional + if True, values above eps are marked 1, else, values below 1-eps are marked 0, by default True + + Returns + ------- + torch.Tensor + downscaled mask + """ + + if downsize is None: + downsize = (mask.shape[2]//2, mask.shape[3]//2) + assert mask.shape[1] == 1, "Expected shape for the input to be (n,1,height,width)" + if blur_mask == True: + mask = gaussian_blur2d(mask, kernel_size=(5,5), sigma=(1.0,1.0)) + mask = F.interpolate(mask, size=downsize, mode='bilinear', align_corners=False) + else: + mask = F.interpolate(mask, size=downsize, mode='bilinear', align_corners=False) + if round_up: + mask[mask>=eps] = 1 + mask[mask=1.0-eps] = 1 + mask[mask<1.0-eps] = 0 + return mask + +def _erode_mask(mask : torch.Tensor, ekernel : torch.Tensor=None, eps : float=1e-8): + """erode the mask, and set gray pixels to 0""" + if ekernel is not None: + mask = erosion(mask, ekernel) + mask[mask>=1.0-eps] = 1 + mask[mask<1.0-eps] = 0 + return mask + + +def _l1_loss( + pred : torch.Tensor, pred_downscaled : torch.Tensor, ref : torch.Tensor, + mask : torch.Tensor, mask_downscaled : torch.Tensor, + image : torch.Tensor, on_pred : bool=True + ): + """l1 loss on src pixels, and downscaled predictions if on_pred=True""" + loss = torch.mean(torch.abs(pred[mask<1e-8] - image[mask<1e-8])) + if on_pred: + loss += torch.mean(torch.abs(pred_downscaled[mask_downscaled>=1e-8] - ref[mask_downscaled>=1e-8])) + return loss + +def _infer( + image : torch.Tensor, mask : torch.Tensor, + forward_front : nn.Module, forward_rears : nn.Module, + ref_lower_res : torch.Tensor, orig_shape : tuple, devices : list, + scale_ind : int, n_iters : int=15, lr : float=0.002): + """Performs inference with refinement at a given scale. + + Parameters + ---------- + image : torch.Tensor + input image to be inpainted, of size (1,3,H,W) + mask : torch.Tensor + input inpainting mask, of size (1,1,H,W) + forward_front : nn.Module + the front part of the inpainting network + forward_rears : nn.Module + the rear part of the inpainting network + ref_lower_res : torch.Tensor + the inpainting at previous scale, used as reference image + orig_shape : tuple + shape of the original input image before padding + devices : list + list of available devices + scale_ind : int + the scale index + n_iters : int, optional + number of iterations of refinement, by default 15 + lr : float, optional + learning rate, by default 0.002 + + Returns + ------- + torch.Tensor + inpainted image + """ + masked_image = image * (1 - mask) + masked_image = torch.cat([masked_image, mask], dim=1) + + mask = mask.repeat(1,3,1,1) + if ref_lower_res is not None: + ref_lower_res = ref_lower_res.detach() + with torch.no_grad(): + z1,z2 = forward_front(masked_image) + # Inference + mask = mask.to(devices[-1]) + ekernel = torch.from_numpy(cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(15,15)).astype(bool)).float() + ekernel = ekernel.to(devices[-1]) + image = image.to(devices[-1]) + z1, z2 = z1.detach().to(devices[0]), z2.detach().to(devices[0]) + z1.requires_grad, z2.requires_grad = True, True + + optimizer = Adam([z1,z2], lr=lr) + + pbar = tqdm(range(n_iters), leave=False) + for idi in pbar: + optimizer.zero_grad() + input_feat = (z1,z2) + for idd, forward_rear in enumerate(forward_rears): + output_feat = forward_rear(input_feat) + if idd < len(devices) - 1: + midz1, midz2 = output_feat + midz1, midz2 = midz1.to(devices[idd+1]), midz2.to(devices[idd+1]) + input_feat = (midz1, midz2) + else: + pred = output_feat + + if ref_lower_res is None: + break + losses = {} + ######################### multi-scale ############################# + # scaled loss with downsampler + pred_downscaled = _pyrdown(pred[:,:,:orig_shape[0],:orig_shape[1]]) + mask_downscaled = _pyrdown_mask(mask[:,:1,:orig_shape[0],:orig_shape[1]], blur_mask=False, round_up=False) + mask_downscaled = _erode_mask(mask_downscaled, ekernel=ekernel) + mask_downscaled = mask_downscaled.repeat(1,3,1,1) + losses["ms_l1"] = _l1_loss(pred, pred_downscaled, ref_lower_res, mask, mask_downscaled, image, on_pred=True) + + loss = sum(losses.values()) + pbar.set_description("Refining scale {} using scale {} ...current loss: {:.4f}".format(scale_ind+1, scale_ind, loss.item())) + if idi < n_iters - 1: + loss.backward() + optimizer.step() + del pred_downscaled + del loss + del pred + # "pred" is the prediction after Plug-n-Play module + inpainted = mask * pred + (1 - mask) * image + inpainted = inpainted.detach().cpu() + return inpainted + +def _get_image_mask_pyramid(batch : dict, min_side : int, max_scales : int, px_budget : int): + """Build the image mask pyramid + + Parameters + ---------- + batch : dict + batch containing image, mask, etc + min_side : int + minimum side length to limit the number of scales of the pyramid + max_scales : int + maximum number of scales allowed + px_budget : int + the product H*W cannot exceed this budget, because of resource constraints + + Returns + ------- + tuple + image-mask pyramid in the form of list of images and list of masks + """ + + assert batch['image'].shape[0] == 1, "refiner works on only batches of size 1!" + + h, w = batch['unpad_to_size'] + h, w = h[0].item(), w[0].item() + + image = batch['image'][...,:h,:w] + mask = batch['mask'][...,:h,:w] + if h*w > px_budget: + #resize + ratio = np.sqrt(px_budget / float(h*w)) + h_orig, w_orig = h, w + h,w = int(h*ratio), int(w*ratio) + print(f"Original image too large for refinement! Resizing {(h_orig,w_orig)} to {(h,w)}...") + image = resize(image, (h,w),interpolation='bilinear', align_corners=False) + mask = resize(mask, (h,w),interpolation='bilinear', align_corners=False) + mask[mask>1e-8] = 1 + breadth = min(h,w) + n_scales = min(1 + int(round(max(0,np.log2(breadth / min_side)))), max_scales) + ls_images = [] + ls_masks = [] + + ls_images.append(image) + ls_masks.append(mask) + + for _ in range(n_scales - 1): + image_p = _pyrdown(ls_images[-1]) + mask_p = _pyrdown_mask(ls_masks[-1]) + ls_images.append(image_p) + ls_masks.append(mask_p) + # reverse the lists because we want the lowest resolution image as index 0 + return ls_images[::-1], ls_masks[::-1] + +def refine_predict( + batch : dict, inpainter : nn.Module, gpu_ids : str, + modulo : int, n_iters : int, lr : float, min_side : int, + max_scales : int, px_budget : int + ): + """Refines the inpainting of the network + + Parameters + ---------- + batch : dict + image-mask batch, currently we assume the batchsize to be 1 + inpainter : nn.Module + the inpainting neural network + gpu_ids : str + the GPU ids of the machine to use. If only single GPU, use: "0," + modulo : int + pad the image to ensure dimension % modulo == 0 + n_iters : int + number of iterations of refinement for each scale + lr : float + learning rate + min_side : int + all sides of image on all scales should be >= min_side / sqrt(2) + max_scales : int + max number of downscaling scales for the image-mask pyramid + px_budget : int + pixels budget. Any image will be resized to satisfy height*width <= px_budget + + Returns + ------- + torch.Tensor + inpainted image of size (1,3,H,W) + """ + + assert not inpainter.training + assert not inpainter.add_noise_kwargs + assert inpainter.concat_mask + + gpu_ids = [f'cuda:{gpuid}' for gpuid in gpu_ids.replace(" ","").split(",") if gpuid.isdigit()] + n_resnet_blocks = 0 + first_resblock_ind = 0 + found_first_resblock = False + for idl in range(len(inpainter.generator.model)): + if isinstance(inpainter.generator.model[idl], FFCResnetBlock) or isinstance(inpainter.generator.model[idl], ResnetBlock): + n_resnet_blocks += 1 + found_first_resblock = True + elif not found_first_resblock: + first_resblock_ind += 1 + resblocks_per_gpu = n_resnet_blocks // len(gpu_ids) + + devices = [torch.device(gpu_id) for gpu_id in gpu_ids] + + # split the model into front, and rear parts + forward_front = inpainter.generator.model[0:first_resblock_ind] + forward_front.to(devices[0]) + forward_rears = [] + for idd in range(len(gpu_ids)): + if idd < len(gpu_ids) - 1: + forward_rears.append(inpainter.generator.model[first_resblock_ind + resblocks_per_gpu*(idd):first_resblock_ind+resblocks_per_gpu*(idd+1)]) + else: + forward_rears.append(inpainter.generator.model[first_resblock_ind + resblocks_per_gpu*(idd):]) + forward_rears[idd].to(devices[idd]) + + ls_images, ls_masks = _get_image_mask_pyramid( + batch, + min_side, + max_scales, + px_budget + ) + image_inpainted = None + + for ids, (image, mask) in enumerate(zip(ls_images, ls_masks)): + orig_shape = image.shape[2:] + image = pad_tensor_to_modulo(image, modulo) + mask = pad_tensor_to_modulo(mask, modulo) + mask[mask >= 1e-8] = 1.0 + mask[mask < 1e-8] = 0.0 + image, mask = move_to_device(image, devices[0]), move_to_device(mask, devices[0]) + if image_inpainted is not None: + image_inpainted = move_to_device(image_inpainted, devices[-1]) + image_inpainted = _infer(image, mask, forward_front, forward_rears, image_inpainted, orig_shape, devices, ids, n_iters, lr) + image_inpainted = image_inpainted[:,:,:orig_shape[0], :orig_shape[1]] + # detach everything to save resources + image = image.detach().cpu() + mask = mask.detach().cpu() + + return image_inpainted From 3f571e6371d01adc9ff1d1eb9bfb79c0d623b837 Mon Sep 17 00:00:00 2001 From: prakhar Date: Sat, 14 May 2022 12:15:12 +0530 Subject: [PATCH 2/2] add a comment about padding inside refiner --- bin/predict.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/bin/predict.py b/bin/predict.py index 4eaf7058..eb24f561 100755 --- a/bin/predict.py +++ b/bin/predict.py @@ -73,6 +73,8 @@ def main(predict_config: OmegaConf): batch = default_collate([dataset[img_i]]) if predict_config.get('refine', False): assert 'unpad_to_size' in batch, "Unpadded size is required for the refinement" + # image unpadding is taken care of in the refiner, so that output image + # is same size as the input image cur_res = refine_predict(batch, model, **predict_config.refiner) cur_res = cur_res[0].permute(1,2,0).detach().cpu().numpy() else: