forked from rodegerdts/Pyalmanac
-
Notifications
You must be signed in to change notification settings - Fork 1
/
alma_ephem.py
executable file
·943 lines (839 loc) · 34.6 KB
/
alma_ephem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
# contains all functions that calculate values for the nautical almanac
# Copyright (C) 2014 Enno Rodegerdts
# Copyright (C) 2019 Andrew Bauer
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import ephem
import math
import datetime
import config
import sys
ephem_sun = ephem.Sun()
ephem_moon = ephem.Moon()
ephem_venus = ephem.Venus()
ephem_mars = ephem.Mars()
ephem_jupiter = ephem.Jupiter()
ephem_saturn = ephem.Saturn()
#degree_sign= u'\N{DEGREE SIGN}'
#----------------------
# internal methods
#----------------------
def hhmm(date):
# turn an ephem.date (float) into a time string formatted hh:mm
tup = date.tuple()
hr = tup[-3]
# round >=30 seconds to next minute
min = tup[-2] + int(round((tup[-1]/60)+0.00001))
# nextday = False
if min == 60:
min = 0
hr += 1
if hr == 24:
hr = 0
# nextday = True # time rounded up into next day
time = '{:02d}:{:02d}'.format(hr,min) # time = "%02d:%02d" %(hr,min)
# return time, nextday
# NOTE: this function could easily return the information that rounding
# flipped into the next day, however this is not required here.
return time
def nadeg(rad, fixedwidth=1):
# changes ephem.angle (rad) to the format usually used in the nautical almanac (ddd°mm.m) and returns a string object.
# the optional argument specifies the minimum width for degrees (only)
theminus = ""
if rad < 0:
theminus = '-'
df = abs(math.degrees(rad)) # convert radians to degrees (float)
di = int(df) # degrees (integer)
# note: round() uses "Rounding Half To Even" strategy
mf = round((df-di)*60, 1) # minutes (float), rounded to 1 decimal place
mi = int(mf) # minutes (integer)
if mi == 60:
mf -= 60
di += 1
if di == 360:
di = 0
if fixedwidth == 2:
gm = "{}{:02d}$^\circ${:04.1f}".format(theminus,di,mf)
else:
if fixedwidth == 3:
gm = "{}{:03d}$^\circ${:04.1f}".format(theminus,di,mf)
else:
gm = "{}{}$^\circ${:04.1f}".format(theminus,di,mf)
return gm
def flag_msg(msg):
if config.logfileopen:
# if open - write to log file
config.writeLOG(msg + '\n')
else:
# otherwise - print to console
print(msg)
return
#-------------------------------
# Sun and Moon calculations
#-------------------------------
def sunmoon(date): # used in suntab(m), sunmoontab(m)
# returns ephemrerids for sun and moon.
#Sun gha dec
#Moon gha v dec d hp
obs = ephem.Observer()
obs.date = date
#Sun
ephem_sun.compute(date,epoch=date)
deg = ephem.degrees(obs.sidereal_time()-ephem_sun.g_ra).norm
ghas = nadeg(deg)
degs = ephem_sun.g_dec
decs = nadeg(degs,2)
#Moon
ephem_moon.compute(date,epoch=date)
deg = ephem.degrees(obs.sidereal_time()-ephem_moon.g_ra).norm
gham = nadeg(deg)
degm = ephem_moon.g_dec
decm = nadeg(degm,2)
#calculate the moons horizontal paralax
deg = ephem.degrees(ephem_moon.radius/0.272805950305)
hp = "{:0.1f}'".format(deg*360*30/ephem.pi)
#calculate v and d by advancing the time with one hour.
ephem_moon.compute(date-0.5*ephem.hour,epoch=date-0.5*ephem.hour)
obs.date = date - 0.5 * ephem.hour
rgha = ephem.degrees(obs.sidereal_time()-ephem_moon.g_ra).norm
rdec = ephem_moon.g_dec
ephem_moon.compute(date+0.5*ephem.hour,epoch=date+0.5*ephem.hour)
obs.date = date + 0.5 * ephem.hour
rghap = ephem.degrees(obs.sidereal_time()-ephem_moon.g_ra).norm
deg = ephem.degrees(ephem.degrees(rghap-rgha).norm-ephem.degrees('14:19:00'))
vm = "{:0.1f}'".format(deg*360*30/ephem.pi)
deg = ephem.degrees(ephem_moon.g_dec-rdec)
dm = "{:0.1f}'".format(deg*360*30/ephem.pi)
# degs, degm have been added for the sunmooontab function
return ghas,decs,gham,vm,decm,dm,hp,degs,degm
##NEW##
def sun_moon_SD(date): # used in suntab(m), sunmoontab(m)
obs = ephem.Observer()
obs.date = date
#Sun
# compute semi-diameter of sun and sun's declination change per hour (in minutes)
ephem_sun.compute(date)
dec = ephem_sun.g_dec
ephem_sun.compute(date+ephem.hour)
obs.date = date+ephem.hour
deg = ephem.degrees(ephem_sun.g_dec-dec)
ds = "{:0.1f}".format(deg*360*30/ephem.pi)
sds = "{:0.1f}".format(ephem_sun.radius*360*30/ephem.pi)
#Moon
# compute semi-diameter of moon (in minutes)
ephem_moon.compute(date)
sdm = "{:0.1f}".format(ephem_moon.radius*360*30/ephem.pi)
return ds,sds,sdm
#------------------------------------------------
# Venus, Mars, Jupiter & Saturn calculations
#------------------------------------------------
def planetsGHA(date): # used in planetstab(m)
# this function returns a tuple of strings with ephemerids in the format used by the nautical almanac.
# following are objects and their values:
#Aries gha
#Venus gha dec
#Mars gha dec
#Jupiter gha dec
#Saturn gha dec
obs = ephem.Observer()
obs.date = date
#Aries, First Point of
deg = ephem.degrees(obs.sidereal_time()).norm
ghaa = nadeg(deg)
#Venus
ephem_venus.compute(date,epoch=date)
deg = ephem.degrees(obs.sidereal_time()-ephem_venus.g_ra).norm
ghav = nadeg(deg)
degv = ephem_venus.g_dec
decv = nadeg(degv,2)
#Mars
ephem_mars.compute(date,epoch=date)
deg = ephem.degrees(obs.sidereal_time()-ephem_mars.g_ra).norm
ghamars = nadeg(deg)
degmars = ephem_mars.g_dec
decmars = nadeg(degmars,2)
#Jupiter
ephem_jupiter.compute(date,epoch=date)
deg = ephem.degrees(obs.sidereal_time()-ephem_jupiter.g_ra).norm
ghaj = nadeg(deg)
degj = ephem_jupiter.g_dec
decj = nadeg(degj,2)
#Saturn
ephem_saturn.compute(date,epoch=date)
deg = ephem.degrees(obs.sidereal_time()-ephem_saturn.g_ra).norm
ghasat = nadeg(deg)
degsat = ephem_saturn.g_dec
decsat = nadeg(degsat,2)
# degv, degmars, degj, degsat have been added for the planetstab function
return ghaa,ghav,decv,ghamars,decmars,ghaj,decj,ghasat,decsat,degv,degmars,degj,degsat
def vdm_planets(date): # used in planetstab(m)
# compute v (GHA correction), d (Declination correction), m (magnitude of planet)
obs = ephem.Observer()
obs.date = date
#Venus
obs.date = date
ephem_venus.compute(date)
gha = ephem.degrees(obs.sidereal_time()-ephem_venus.g_ra).norm
dec = ephem_venus.g_dec
ephem_venus.compute(date+ephem.hour)
obs.date = date+ephem.hour
ghap = ephem.degrees(obs.sidereal_time()-ephem_venus.g_ra).norm
deg = ephem.degrees(ghap-gha).norm-ephem.degrees('15:00:00')
vvenus = "{:0.1f}".format(deg*360*30/ephem.pi)
deg = ephem.degrees(ephem_venus.g_dec-dec)
dvenus = "{:0.1f}".format(deg*360*30/ephem.pi)
mvenus = "{:0.1f}".format(ephem_venus.mag)
#Mars
obs.date = date
ephem_mars.compute(date)
gha = ephem.degrees(obs.sidereal_time()-ephem_mars.g_ra).norm
dec = ephem_mars.g_dec
ephem_mars.compute(date+ephem.hour)
obs.date = date+ephem.hour
ghap = ephem.degrees(obs.sidereal_time()-ephem_mars.g_ra).norm
deg = ephem.degrees(ephem.degrees(ghap-gha).norm-ephem.degrees('15:00:00'))
vmars = "{:0.1f}".format(deg*360*30/ephem.pi)
deg = ephem.degrees(ephem_mars.g_dec-dec)
dmars = "{:0.1f}".format(deg*360*30/ephem.pi)
mmars = "{:0.1f}".format(ephem_mars.mag)
#Jupiter
obs.date = date
ephem_jupiter.compute(date)
gha = ephem.degrees(obs.sidereal_time()-ephem_jupiter.g_ra).norm
dec = ephem_jupiter.g_dec
ephem_jupiter.compute(date+ephem.hour)
obs.date = date+ephem.hour
ghap = ephem.degrees(obs.sidereal_time()-ephem_jupiter.g_ra).norm
deg = ephem.degrees(ephem.degrees(ghap-gha).norm-ephem.degrees('15:00:00'))
vjup = "{:0.1f}".format(deg*360*30/ephem.pi)
deg = ephem.degrees(ephem_jupiter.g_dec-dec)
djup = "{:0.1f}".format(deg*360*30/ephem.pi)
mjup = "{:0.1f}".format(ephem_jupiter.mag)
#Saturn
obs.date = date
ephem_saturn.compute(date)
gha = ephem.degrees(obs.sidereal_time()-ephem_saturn.g_ra).norm
dec = ephem_saturn.g_dec
ephem_saturn.compute(date+ephem.hour)
obs.date = date+ephem.hour
ghap = ephem.degrees(obs.sidereal_time()-ephem_saturn.g_ra).norm
deg = ephem.degrees(ephem.degrees(ghap-gha).norm-ephem.degrees('15:00:00'))
vsat = "{:0.1f}".format(deg*360*30/ephem.pi)
deg = ephem.degrees(ephem_saturn.g_dec-dec)
dsat = "{:0.1f}".format(deg*360*30/ephem.pi)
msat = "{:0.1f}".format(ephem_saturn.mag)
return vvenus,dvenus,mvenus,vmars,dmars,mmars,vjup,djup,mjup,vsat,dsat,msat
#-----------------------------------------
# Aries & planet transit calculations
#-----------------------------------------
def ariestransit(date): # used in planetstab(m)
# returns transit time of aries for given date
obs = ephem.Observer()
obs.date = ephem.date(date)+1
sid = obs.sidereal_time()
trans = ephem.hours(2*math.pi-sid/1.00273790935)
# obs.date = date + trans/(2*math.pi) #turns ephem.angle (time) into ephem date
hhmm = str(trans)[0:5] # can return "h:mm:"
if hhmm[1:2] == ':': # check if single digit hours
hhmm = '0' + hhmm[0:4]
return hhmm
def planetstransit(date): # used in starstab
#returns SHA and meridian passage for the navigational planets
obs = ephem.Observer()
obs.date = date
ephem_venus.compute(date)
vsha = nadeg(2*math.pi-ephem.degrees(ephem_venus.g_ra).norm)
vtrans = hhmm(obs.next_transit(ephem_venus))
hpvenus = "{:0.1f}".format((math.tan(6371/(ephem_venus.earth_distance*149597870.7)))*60*180/math.pi)
obs.date = date
ephem_mars.compute(date)
marssha = nadeg(2*math.pi-ephem.degrees(ephem_mars.g_ra).norm)
marstrans = hhmm(obs.next_transit(ephem_mars))
hpmars = "{:0.1f}".format((math.tan(6371/(ephem_mars.earth_distance*149597870.7)))*60*180/math.pi)
obs.date = date
ephem_jupiter.compute(date)
jsha = nadeg(2*math.pi-ephem.degrees(ephem_jupiter.g_ra).norm)
jtrans = hhmm(obs.next_transit(ephem_jupiter))
obs.date = date
ephem_saturn.compute(date)
satsha = nadeg(2*math.pi-ephem.degrees(ephem_saturn.g_ra).norm)
sattrans = hhmm(obs.next_transit(ephem_saturn))
return [vsha,vtrans,marssha,marstrans,jsha,jtrans,satsha,sattrans,hpmars,hpvenus]
#-----------------------
# star calculations
#-----------------------
def stellar(date): # used in starstab
# returns a list of lists with name, SHA and Dec for all navigational stars for epoch of date.
out = []
for line in db.strip().split('\n'):
st = ephem.readdb(line)
st.compute(date+0.5) # calculate at noon
out.append([st.name,nadeg(2*math.pi-ephem.degrees(st.g_ra).norm),nadeg(st.g_dec)])
return out
# List of navigational stars with data from Hipparcos, e.g.:
# http://vizier.u-strasbg.fr/viz-bin/VizieR-5?-source=I/311&-out.all&-out.max=10&HIP==677
# The format corresponds to an XEphem database file:
# http://www.clearskyinstitute.com/xephem/help/xephem.html#mozTocId468501
db = """
Alpheratz,f|S|B9,0:08:23.26|137.46,29:05:25.55|-163.44,2.04,2000,0
Ankaa,f|S|K0,0:26:17.05|233.05,-42:18:21.55|-356.30,2.55,2000,0
Schedar,f|S|K0,0:40:30.44|50.88,56:32:14.39|-32.13,2.41,2000,0
Diphda,f|S|G9,0:43:35.37|232.55,-17:59:11.78|31.99,2.21,2000,0
Achernar,f|S|B3,1:37:42.85|87.00,-57:14:12.31|-38.24,0.42,2000,0
Hamal,f|S|K2,2:07:10.41|188.55,23:27:44.70|-148.08,2.17,2000,0
Polaris,f|S|F7,2:31:49.09|44.48,89:15:50.79|-11.85,2.11,2000,0
Acamar,f|S|A4,2:58:15.68|-52.89,-40:18:16.85|21.98,2.94,2000,0
Menkar,f|S|M2,3:02:16.77|-10.41,4:05:23.06|-76.85,2.62,2000,0
Mirfak,f|S|F5,3:24:19.37|23.75,49:51:40.25|-26.23,1.90,2000,0
Aldebaran,f|S|K5,4:35:55.24|63.45,16:30:33.49|-188.94,1.00,2000,0
Rigel,f|S|B8,5:14:32.27|1.31,-8:12:05.90|0.50,0.19,2000,0
Capella,f|S|M1,5:16:41.36|75.25,45:59:52.77|-426.89,0.24,2000,0
Bellatrix,f|S|B2,5:25:07.86|-8.11,6:20:58.93|-12.88,1.55,2000,0
Elnath,f|S|B7,5:26:17.51|22.76,28:36:26.83|-173.58,1.62,2000,0
Alnilam,f|S|B0,5:36:12.81|1.44,-1:12:06.91|-0.78,1.62,2000,0
Betelgeuse,f|S|M2,5:55:10.31|27.54,7:24:25.43|11.30,0.50,2000,0
Canopus,f|S|F0,6:23:57.11|19.93,-52:41:44.38|23.24,-0.55,2000,0
Sirius,f|S|A0,6:45:08.92|-546.01,-16:42:58.02|-1223.07,-1.09,2000,0
Adhara,f|S|B2,6:58:37.55|3.24,-28:58:19.51|1.33,1.42,2000,0
Procyon,f|S|F5,7:39:18.12|-714.59,5:13:29.96|-1036.80,0.46,2000,0
Pollux,f|S|K0,7:45:18.95|-626.55,28:01:34.32|-45.80,1.29,2000,0
Avior,f|S|K3,8:22:30.84|-25.52,-59:30:34.14|22.06,2.00,2000,0
Suhail,f|S|K4,9:07:59.76|-24.01,-43:25:57.33|13.52,2.34,2000,0
Miaplacidus,f|S|A2,9:13:11.98|-156.47,-69:43:01.95|108.95,1.66,2000,0
Alphard,f|S|K3,9:27:35.24|-15.23,-8:39:30.96|34.37,2.14,2000,0
Regulus,f|S|B7,10:08:22.31|-248.73,11:58:01.95|5.59,1.32,2000,0
Dubhe,f|S|F7,11:03:43.67|-134.11,61:45:03.72|-34.70,1.95,2000,0
Denebola,f|S|A3,11:49:03.58|-497.68,14:34:19.41|-114.67,2.16,2000,0
Gienah,f|S|B8,12:15:48.37|-158.61,-17:32:30.95|21.86,2.55,2000,0
Acrux,f|S|B0,12:26:35.90|-35.83,-63:05:56.73|-14.86,0.67,2000,0
Gacrux,f|S|M4,12:31:09.96|28.23,-57:06:47.57|-265.08,1.63,2000,0
Alioth,f|S|A0,12:54:01.75|111.91,55:57:35.36|-8.24,1.75,2000,0
Spica,f|S|B1,13:25:11.58|-42.35,-11:09:40.75|-30.67,0.89,2000,0
Alkaid,f|S|B3,13:47:32.44|-121.17,49:18:47.76|-14.91,1.80,2000,0
Hadar,f|S|B1,14:03:49.41|-33.27,-60:22:22.93|-23.16,0.54,2000,0
Menkent,f|S|K0,14:06:40.95|-520.53,-36:22:11.84|-518.06,2.22,2000,0
Arcturus,f|S|K2,14:15:39.67|-1093.39,19:10:56.67|-2000.06,0.11,2000,0
Rigil Kent.,f|S|G2,14:39:36.49|-3679.25,-60:50:02.37|473.67,0.14,2000,0
Kochab,f|S|K4,14:50:42.33|-32.61,74:09:19.81|11.42,2.20,2000,0
Zuben'ubi,f|S|A3,14:50:52.71|-105.68,-16:02:30.40|-68.40,2.79,2000,0
Alphecca,f|S|A0,15:34:41.27|120.27,26:42:52.89|-89.58,2.22,2000,0
Antares,f|S|M1,16:29:24.46|-12.11,-26:25:55.21|-23.30,0.98,2000,0
Atria,f|S|K2,16:48:39.90|17.99,-69:01:39.76|-31.58,2.07,2000,0
Sabik,f|S|A2,17:10:22.69|40.13,-15:43:29.66|99.17,2.44,2000,0
Shaula,f|S|B1,17:33:36.52|-8.53,-37:06:13.76|-30.80,1.52,2000,0
Rasalhague,f|S|A5,17:34:56.07|108.07,12:33:36.13|-221.57,2.13,2000,0
Eltanin,f|S|K5,17:56:36.37|-8.48,51:29:20.02|-22.79,2.36,2000,0
Kaus Aust.,f|S|B9,18:24:10.32|-39.42,-34:23:04.62|-124.20,1.80,2000,0
Vega,f|S|A0,18:36:56.34|200.94,38:47:01.28|286.23,0.09,2000,0
Nunki,f|S|B2,18:55:15.93|15.14,-26:17:48.21|-53.43,2.01,2000,0
Altair,f|S|A7,19:50:47.00|536.23,8:52:05.96|385.29,0.83,2000,0
Peacock,f|S|B2,20:25:38.86|6.90,-56:44:06.32|-86.02,1.86,2000,0
Deneb,f|S|A2,20:41:25.92|2.01,45:16:49.22|1.85,1.30,2000,0
Enif,f|S|K2,21:44:11.16|26.92,9:52:30.03|0.44,2.55,2000,0
Al Na'ir,f|S|B7,22:08:13.98|126.69,-46:57:39.51|-147.47,1.70,2000,0
Fomalhaut,f|S|A3,22:57:39.05|328.95,-29:37:20.05|-164.67,1.18,2000,0
Scheat,f|S|M2,23:03:46.46|187.65,28:04:58.03|136.93,2.49,2000,0
Markab,f|S|B9,23:04:45.65|60.40,15:12:18.96|-41.30,2.48,2000,0
"""
#--------------------
# TWILIGHT table
#--------------------
# create a list of 'sun above/below horizon' states per Latitude per Normal/Civil/Naut...
#sunvisible = [[None]*3 for i in range(31)] # sunvisible[0][0] up to sunvisible[30][2]
def twilight(date, lat, hemisph): # used in twilighttab (section 1)
# Returns for given date and latitude(in full degrees):
# naut. and civil twilight (before sunrise), sunrise, meridian passage, sunset, civil and nautical twilight (after sunset).
# NOTE: 'twilight' is only called for every third day in the Full Almanac...
# ...therefore daily tracking of the sun state is impossible.
mth = ephem.date(date).triple()[1]
out = [0,0,0,0,0,0,0]
obs = ephem.Observer()
latitude = ephem.degrees('{}:00:00.0'.format(lat))
obs.lat = latitude
d = ephem.date(date - 30 * ephem.second) # search from 30 seconds before midnight
obs.date = d
obs.pressure = 0
s = ephem.Sun(obs)
s.compute(d)
r = s.radius
obs.horizon = ephem.degrees('-12')+r # Nautical twilight ...
try:
out[0] = hhmm(obs.next_rising(s)) # begin
except:
out[0] = '--:--'
obs.date = d
try:
out[6] = hhmm(obs.next_setting(s)) # end
except:
out[6] = '--:--'
if out[0] == '--:--' and out[6] == '--:--': # if neither begin nor end...
if config.search_next_rising_sun:
yn = getsunstate(date, lat, 2) # ... get the sun state
else:
yn = midnightsun(mth, hemisph)
out[0] = yn
out[6] = yn
#-----------------------------------------------------------
obs.horizon = ephem.degrees('-6')+r # Civil twilight...
obs.date = d
try:
out[1] = hhmm(obs.next_rising(s)) # begin
except:
out[1] = '--:--'
obs.date = d
try:
out[5] = hhmm(obs.next_setting(s)) # end
except:
out[5] = '--:--'
if out[1] == '--:--' and out[5] == '--:--': # if neither begin nor end...
if config.search_next_rising_sun:
yn = getsunstate(date, lat, 1) # ... get the sun state
else:
yn = midnightsun(mth, hemisph)
out[1] = yn
out[5] = yn
#-----------------------------------------------------------
obs.horizon = '-0:34'
obs.date = d
try:
out[2] = hhmm(obs.next_rising(s)) # sunrise
except:
out[2] = '--:--'
obs.date = d
try:
out[4] = hhmm(obs.next_setting(s)) # sunset
except:
out[4] = '--:--'
if out[2] == '--:--' and out[4] == '--:--': # if neither sunrise nor sunset...
if config.search_next_rising_sun:
yn = getsunstate(date, lat, 0) # ... get the sun state
else:
yn = midnightsun(mth, hemisph)
out[2] = yn
out[4] = yn
#-----------------------------------------------------------
obs.date = d
out[3] = hhmm(obs.next_transit(s))
return out
##NEW##
def getsunstate(d, lat, h):
# populate the sun state (visible or not) for the specified date & latitude
# note: the first parameter 'd' is an ephem date at midnight
# note: getsunstate is called when there is neither a sunrise nor a sunset on 'd'
i = config.lat.index(lat)
latitude = ephem.degrees('{}:00:00.0'.format(lat))
obs = ephem.Observer()
#d = ephem.date(date - 30 * ephem.second)
obs.pressure = 0
s = ephem.Sun(obs)
err = False
obs.date = d
obs.lat = latitude
s.compute(d)
sunup = False
if h == 0:
obs.horizon = '-0:34' # sunrise/sunset
if h == 1:
r = s.radius
obs.horizon = ephem.degrees('-6')+r # Civil twilight...
if h == 2:
r = s.radius
obs.horizon = ephem.degrees('-12')+r # Nautical twilight...
nextrising = d + 100.0 # in case sunset but no next sunrise
nextsetting = d + 100.0 # in case sunrise but no next sunset
try:
nextrising = obs.next_rising(s)
except ephem.NeverUpError:
err = True
#print("nr NeverUp",i,h,d)
sunup = False
#sunvisible[i][h] = False
except ephem.AlwaysUpError:
err = True
#print("nr AlwaysUp",i,h,d)
sunup = True
#sunvisible[i][h] = True
except Exception:
flag_msg("Oops! sun nextR {}: {} occured, line: {}".format(i,sys.exc_info()[1],sys.exc_info()[2].tb_lineno))
sys.exc_clear() # only in Python 2
obs.date = d
if not(err): # note - 'nextrising' above *should* fail
try:
nextsetting = obs.next_setting(s)
except ephem.NeverUpError:
err = True
#print("ns NeverUp",i,h,d)
sunup = False
#sunvisible[i][h] = False
except ephem.AlwaysUpError:
err = True
#print("ns AlwaysUp",i,h,d)
sunup = True
#sunvisible[i][h] = True
except Exception:
flag_msg("Oops! sun nextS {}: {} occured, line: {}".format(i,sys.exc_info()[1],sys.exc_info()[2].tb_lineno))
sys.exc_clear() # only in Python 2
if not(err): # note - "err == True" *is* expected...
# however if we found both, which occured first?
sunup = False
#sunvisible[i][h] = False
if nextrising > nextsetting:
sunup = True
#sunvisible[i][h] = True
#print("{}".format(i), nextrising, nextsetting, sunvisible[i][h])
# return the current sunstate
out = '--:--'
if sunup == True:
out = r'\begin{tikzpicture}\draw (0,0) rectangle (12pt,4pt);\end{tikzpicture}'
else:
out = r'\rule{12Pt}{4Pt}'
return out
##NEW##
def midnightsun(mth, hemisph):
# simple way to fudge whether the sun is up or down when there's no
# sunrise or sunset on a day depending on the month and hemisphere only.
# Note: this works for the chosen latitudes to be calculated.
sunup = False
if mth > 3 and mth < 10: # if April to September inclusive
sunup = True
if hemisph == 'S':
sunup = not(sunup)
if sunup == True:
out = r'''\begin{tikzpicture}\draw (0,0) rectangle (12pt,4pt);\end{tikzpicture}'''
else:
out = r'''\rule{12Pt}{4Pt}'''
return out
#-------------------------
# MOONRISE/-SET table
#-------------------------
# create a list of 'moon above/below horizon' states per Latitude...
# None = unknown; True = above horizon (visible); False = below horizon (not visible)
moonvisible = [None] * 31 # moonvisible[0] up to moonvisible[30]
def moonrise_set(date, lat): # used in twilighttab (section 2)
# returns moonrise and moonset for the given date and latitude plus next 2 days:
# rise day 1, rise day 2, rise day 3, set day 1, set day 2, set day 3
# Additionally it also tracks the current state of the moon (above or below horizon)
i = config.lat.index(lat)
out = ['--:--','--:--','--:--','--:--','--:--','--:--'] # first event
out2 = ['--:--','--:--','--:--','--:--','--:--','--:--'] # second event on same day (rare)
obs = ephem.Observer()
latitude = ephem.degrees('{}:00:00.0'.format(lat))
obs.lat = latitude
obs.pressure = 0
obs.horizon = '-0:34'
d = ephem.date(date - 30 * ephem.second) # search from 30 seconds before midnight
obs.date = d
m = ephem.Moon(obs)
m.compute(d)
#-----------------------------------------------------------
# Moonrise/Moonset on 1st. day ...
try:
firstrising = obs.next_rising(m)
if firstrising-obs.date >= 1:
raise ValueError, 'event next day'
out[0] = hhmm(firstrising) # note: overflow to 00:00 next day is correct here
lastevent = firstrising
moonvisible[i] = True
except Exception: # includes NeverUpError and AlwaysUpError
out[0] = '--:--'
lastevent = 0
if out[0] != '--:--':
try:
nextr = obs.next_rising(m, start=firstrising)
if nextr-obs.date < 1:
out2[0] = hhmm(nextr) # note: overflow to 00:00 next day is correct here
lastevent = nextr
except UnboundLocalError:
pass
except ephem.NeverUpError:
pass
except ephem.AlwaysUpError:
pass
except Exception:
flag_msg("Oops! {} occured, line: {}".format(sys.exc_info()[1],sys.exc_info()[2].tb_lineno))
sys.exc_clear() # only in Python 2
obs.date = d
try:
firstsetting = obs.next_setting(m)
if firstsetting-obs.date >= 1:
raise ValueError, 'event next day'
out[3] = hhmm(firstsetting) # note: overflow to 00:00 next day is correct here
if firstsetting > lastevent:
lastevent = firstsetting
moonvisible[i] = False
except Exception: # includes NeverUpError and AlwaysUpError
out[3] = '--:--'
if out[3] != '--:--':
try:
nexts = obs.next_setting(m, start=firstsetting)
if nexts-obs.date < 1:
out2[3] = hhmm(nexts) # note: overflow to 00:00 next day is correct here
if nexts > lastevent:
moonvisible[i] = False
except UnboundLocalError:
pass
except ephem.NeverUpError:
pass
except ephem.AlwaysUpError:
pass
except Exception:
flag_msg("Oops! {} occured, line: {}".format(sys.exc_info()[1],sys.exc_info()[2].tb_lineno))
sys.exc_clear() # only in Python 2
if out[0] == '--:--' and out[3] == '--:--': # if neither moonrise nor moonset...
if moonvisible[i] == None:
getmoonstate(d, lat) # ...get moon state if unknown
out[0] = moonstate(i)
out[3] = moonstate(i)
#-----------------------------------------------------------
# Moonrise/Moonset on 2nd. day ...
d = ephem.date(date + 1 - 30 * ephem.second)
obs.date = d
m.compute(d)
try:
firstrising = obs.next_rising(m)
if firstrising-obs.date >= 1:
raise ValueError, 'event next day'
out[1] = hhmm(firstrising) # note: overflow to 00:00 next day is correct here
lastevent = firstrising
moonvisible[i] = True
except Exception: # includes NeverUpError and AlwaysUpError
out[1] = '--:--'
lastevent = 0
if out[1] != '--:--':
try:
nextr = obs.next_rising(m, start=firstrising)
if nextr-obs.date < 1:
out2[1] = hhmm(nextr) # note: overflow to 00:00 next day is correct here
lastevent = nextr
except UnboundLocalError:
pass
except ephem.NeverUpError:
pass
except ephem.AlwaysUpError:
pass
except Exception:
flag_msg("Oops! {} occured, line: {}".format(sys.exc_info()[1],sys.exc_info()[2].tb_lineno))
sys.exc_clear() # only in Python 2
obs.date = d
try:
firstsetting = obs.next_setting(m)
if firstsetting-obs.date >= 1:
raise ValueError, 'event next day'
out[4] = hhmm(firstsetting) # note: overflow to 00:00 next day is correct here
if firstsetting > lastevent:
lastevent = firstsetting
moonvisible[i] = False
except Exception: # includes NeverUpError and AlwaysUpError
out[4] = '--:--'
if out[4] != '--:--':
try:
nexts = obs.next_setting(m, start=firstsetting)
if nexts-obs.date < 1:
out2[4] = hhmm(nexts) # note: overflow to 00:00 next day is correct here
if nexts > lastevent:
moonvisible[i] = False
except UnboundLocalError:
pass
except ephem.NeverUpError:
pass
except ephem.AlwaysUpError:
pass
except Exception:
flag_msg("Oops! {} occured, line: {}".format(sys.exc_info()[1],sys.exc_info()[2].tb_lineno))
sys.exc_clear() # only in Python 2
if out[1] == '--:--' and out[4] == '--:--': # if neither moonrise nor moonset...
if moonvisible[i] == None:
getmoonstate(d, lat) # ...get moon state if unknown
out[1] = moonstate(i)
out[4] = moonstate(i)
#-----------------------------------------------------------
# Moonrise/Moonset on 3rd. day ...
d = ephem.date(date + 2 - 30 * ephem.second)
obs.date = d
m.compute(d)
try:
firstrising = obs.next_rising(m)
if firstrising-obs.date >= 1:
raise ValueError, 'event next day'
out[2] = hhmm(firstrising) # note: overflow to 00:00 next day is correct here
lastevent = firstrising
moonvisible[i] = True
except Exception: # includes NeverUpError and AlwaysUpError
out[2] = '--:--'
lastevent = 0
if out[2] != '--:--':
try:
nextr = obs.next_rising(m, start=firstrising)
if nextr-obs.date < 1:
out2[2] = hhmm(nextr) # note: overflow to 00:00 next day is correct here
lastevent = nextr
except UnboundLocalError:
pass
except ephem.NeverUpError:
pass
except ephem.AlwaysUpError:
pass
except Exception:
flag_msg("Oops! {} occured, line: {}".format(sys.exc_info()[1],sys.exc_info()[2].tb_lineno))
sys.exc_clear() # only in Python 2
obs.date = d
try:
firstsetting = obs.next_setting(m)
if firstsetting-obs.date >= 1:
raise ValueError, 'event next day'
out[5] = hhmm(firstsetting) # note: overflow to 00:00 next day is correct here
if firstsetting > lastevent:
lastevent = firstsetting
moonvisible[i] = False
except Exception: # includes NeverUpError and AlwaysUpError
out[5] = '--:--'
if out[5] != '--:--':
try:
nexts = obs.next_setting(m, start=firstsetting)
if nexts-obs.date < 1:
out2[5] = hhmm(nexts) # note: overflow to 00:00 next day is correct here
if nexts > lastevent:
moonvisible[i] = False
except UnboundLocalError:
pass
except ephem.NeverUpError:
pass
except ephem.AlwaysUpError:
pass
except Exception:
flag_msg("Oops! {} occured, line: {}".format(sys.exc_info()[1],sys.exc_info()[2].tb_lineno))
sys.exc_clear() # only in Python 2
if out[2] == '--:--' and out[5] == '--:--': # if neither moonrise nor moonset...
if moonvisible[i] == None:
getmoonstate(d, lat) # ...get moon state if unknown
out[2] = moonstate(i)
out[5] = moonstate(i)
return out, out2
##NEW##
def getmoonstate(d, lat):
# populate the moon state (visible or not) for the specified date & latitude
# note: the first parameter 'd' is already an ephem date 30 seconds before midnight
# note: getmoonstate is called when there is neither a moonrise nor a moonset on 'd'
i = config.lat.index(lat)
latitude = ephem.degrees('{}:00:00.0'.format(lat))
obs = ephem.Observer()
#d = ephem.date(date - 30 * ephem.second)
obs.pressure = 0
obs.horizon = '-0:34'
m = ephem.Moon(obs)
err = False
obs.date = d
obs.lat = latitude
m.compute(d)
nextrising = d + 100.0 # in case moonset but no next moonrise
nextsetting = d + 100.0 # in case moonrise but no next moonset
try:
nextrising = obs.next_rising(m)
except ephem.NeverUpError:
err = True
#print "nr NeverUp"
moonvisible[i] = False
except ephem.AlwaysUpError:
err = True
#print "nr AlwaysUp"
moonvisible[i] = True
except Exception:
flag_msg("Oops! moon nextR {}: {} occured, line: {}".format(i,sys.exc_info()[1],sys.exc_info()[2].tb_lineno))
sys.exc_clear() # only in Python 2
obs.date = d
if not(err): # note - 'nextrising' above *should* fail
try:
nextsetting = obs.next_setting(m)
except ephem.NeverUpError:
err = True
#print "ns NeverUp"
moonvisible[i] = False
except ephem.AlwaysUpError:
err = True
#print "ns AlwaysUp"
moonvisible[i] = True
except Exception:
flag_msg("Oops! moon nextS {}: {} occured, line: {}".format(i,sys.exc_info()[1],sys.exc_info()[2].tb_lineno))
sys.exc_clear() # only in Python 2
if not(err): # note - "err == True" *is* expected...
# however if we found both, which occured first?
moonvisible[i] = False
if nextrising > nextsetting:
moonvisible[i] = True
#print("{}".format(i), nextrising, nextsetting, moonvisible[i])
return
##NEW##
def moonstate(ndx):
# return the current moonstate (if known)
out = '--:--'
if moonvisible[ndx] == True:
#out = 'UP'
#out = r'\framebox(12,4){}'
#out = r'{\setlength{\fboxrule}{0.8pt}\setlength{\fboxsep}{0pt}\fbox{\makebox(12,4){}}}'
#out = r'{\setlength{\fboxrule}{0.8pt}\fbox{\parbox[c][0pt]{0pt}{ }}}'
#out = r'\includegraphics[scale=1.0]{./moonup.jpg}'
out = r'\begin{tikzpicture}\draw (0,0) rectangle (12pt,4pt);\end{tikzpicture}'
if moonvisible[ndx] == False:
#out = 'DOWN'
out = r'\rule{12Pt}{4Pt}'
return out
#------------------------------
# Equation of Time section
#------------------------------
def equation_of_time(date): # used in twilighttab (section 3)
# returns equation of time, the sun's transit time,
# the moon's transit-, antitransit-time, age and percent illumination.
# (Equation of Time = Mean solar time - Apparent solar time)
py_date = date.tuple()
py_obsdate = datetime.date(py_date[0], py_date[1], py_date[2])
d = ephem.date(date - 30 * ephem.second)
obs = ephem.Observer()
obs.date = d
ephem_sun.compute(d)
ephem_moon.compute(d)
transs = '--:--'
antim = '--:--'
transm = '--:--'
next_s_tr = obs.next_transit(ephem_sun,start=d)
if next_s_tr - obs.date < 1:
transs = hhmm(next_s_tr)
next_m_atr = obs.next_antitransit(ephem_moon,start=d)
if next_m_atr - obs.date < 1:
antim = hhmm(next_m_atr)
next_m_tr = obs.next_transit(ephem_moon,start=d)
if next_m_tr - obs.date < 1:
transm = hhmm(next_m_tr)
#-----------------------------
obs = ephem.Observer()
obs.date = date
ephem_moon.compute(date+0.5)
pct = int(round(ephem_moon.phase)) # percent of moon surface illuminated
age = int(round((date+0.5)-ephem.previous_new_moon(date+0.5)))
phase = ephem_moon.elong.norm+0.0 # moon phase as float (0:new to π:full to 2π:new)
ephem_sun.compute(date-0.1)
obs.date = date-0.1
# round to the second; convert back to days
x = round((obs.next_antitransit(ephem_sun)-date)*86400)*2*math.pi/86400
eqt00 = ephem.hours(x)
eqt00 = str(eqt00)[-8:-3]
if x >= 0:
eqt00 = r"\colorbox{{lightgray!80}}{{{}}}".format(eqt00)
y = round((obs.next_transit(ephem_sun)-(date+0.5))*86400)*2*math.pi/86400
eqt12 = ephem.hours(y)
eqt12 = str(eqt12)[-8:-3]
if y >= 0:
eqt12 = r"\colorbox{{lightgray!80}}{{{}}}".format(eqt12)
return eqt00,eqt12,transs,transm,antim,age,pct