-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutil.py
106 lines (72 loc) · 4 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import numpy as np
import argparse
import pandas as pd
from weight_samples import SampleWeighter
def none_or_one(pd_series):
return pd_series/pd_series
def safe_log(x):
return np.log(np.clip(x, 1e-4, None))
def get_hostgal_range(hostgal_photoz):
return np.clip(hostgal_photoz//0.2, 0, 6)
def get_fe_argparser(desc):
parser = argparse.ArgumentParser(description=desc)
parser.add_argument("meta_path", action="store", default="input/test_set_metadata.csv")
parser.add_argument("light_curve_path", action="store", default="input/test_set.csv")
parser.add_argument("output_path", action="store", default="features/features_test.csv")
return parser.parse_args()
def map_classes(df):
class_list = df["target"].value_counts().index
class_dict = {}
for i, c in enumerate(class_list):
class_dict[c] = i
df["target"] = df["target"].map(class_dict)
return df, class_list.tolist()
def prepare_data():
train_df = pd.read_csv("input/training_set_metadata.csv")
test_df = pd.read_csv("input/test_set_metadata.csv")
for feature_file in ["bazin", "features_v1", "features_v2"]:
train_df = train_df.merge(pd.read_csv("features/train_{}.csv".format(feature_file)),
on="object_id", how="left")
test_df = test_df.merge(pd.read_csv("features/test_{}.csv".format(feature_file)),
on="object_id", how="left")
hostgal_calc_df = pd.read_csv("features/hostgal_calc.csv")
train_df = train_df.merge(hostgal_calc_df, on="object_id", how="left")
test_df = test_df.merge(hostgal_calc_df, on="object_id", how="left")
train_gal = train_df[train_df["hostgal_photoz"] == 0].copy()
train_exgal = train_df[train_df["hostgal_photoz"] > 0].copy()
test_gal = test_df[test_df["hostgal_photoz"] == 0].copy()
test_exgal = test_df[test_df["hostgal_photoz"] > 0].copy()
sw = SampleWeighter(train_exgal["hostgal_photoz"], test_exgal["hostgal_photoz"])
train_gal = sw.calculate_weights(train_gal, True)
train_exgal = sw.calculate_weights(train_exgal, False)
train_gal, gal_class_list = map_classes(train_gal)
train_exgal, exgal_class_list = map_classes(train_exgal)
return (train_gal, train_exgal, test_gal, test_exgal,
gal_class_list, exgal_class_list,
test_df[["object_id", "hostgal_photoz"]])
def is_labeled_as(preds, class_list, label):
return preds.argmax(axis=1) == np.where(np.array(class_list) == label)[0]
def get_class99_proba(test_df, test_preds, all_classes):
base = 0.02
high99 = (get_hostgal_range(test_df["hostgal_photoz"]) == 0)
low99 = is_labeled_as(test_preds, all_classes, 15)
for label in [64, 67, 88, 90]:
low99 = low99 | is_labeled_as(test_preds, all_classes, label)
class99 = 0.22 - 0.18 * low99 + 0.13 * high99 - base
not_sure = (test_preds.max(axis=1) < 0.9)
filt = (test_df["hostgal_photoz"] > 0) & not_sure
return (base + (class99 * filt).values).reshape(-1, 1)
def submit(test_df, test_preds_gal, test_preds_exgal, gal_class_list, exgal_class_list, sub_file):
all_classes = gal_class_list.tolist() + exgal_class_list.tolist()
gal_indices = np.where(test_df["hostgal_photoz"] == 0)[0]
exgal_indices = np.where(test_df["hostgal_photoz"] >= 0)[0]
test_preds = np.zeros((test_df.shape[0], len(all_classes)))
test_preds[gal_indices, :] = np.hstack((np.clip(test_preds_gal, 1e-4, None),
np.zeros((test_preds_gal.shape[0], len(exgal_class_list)))))
test_preds[exgal_indices, :] = np.hstack((np.zeros((test_preds_exgal.shape[0], len(gal_class_list))),
np.clip(test_preds_exgal, 1e-4, None)))
estimated99 = get_class99_proba(test_df, test_preds, all_classes)
sub_df = pd.DataFrame(index=test_df['object_id'], data=np.round(test_preds * (1 - estimated99), 4),
columns=['class_%d' % i for i in all_classes])
sub_df["class_99"] = estimated99
sub_df.to_csv(sub_file)