-
Notifications
You must be signed in to change notification settings - Fork 25
/
separate_detections_into_folders.py
730 lines (521 loc) · 30.5 KB
/
separate_detections_into_folders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
r"""
separate_detections_into_folders.py
**Overview**
Given a .json file with batch processing results, separate the files in that
set of results into folders that contain animals/people/vehicles/nothing,
according to per-class thresholds.
Image files are copied, not moved.
**Output structure**
Preserves relative paths within each of those folders; cannot be used with .json
files that have absolute paths in them.
For example, if your .json file has these images:
* a/b/c/1.jpg
* a/b/d/2.jpg
* a/b/e/3.jpg
* a/b/f/4.jpg
* a/x/y/5.jpg
And let's say:
* The results say that the first three images are empty/person/vehicle, respectively
* The fourth image is above threshold for "animal" and "person"
* The fifth image contains an animal
* You specify an output base folder of c:/out
You will get the following files:
* c:/out/empty/a/b/c/1.jpg
* c:/out/people/a/b/d/2.jpg
* c:/out/vehicles/a/b/e/3.jpg
* c:/out/animal_person/a/b/f/4.jpg
* c:/out/animals/a/x/y/5.jpg
**Rendering bounding boxes**
By default, images are just copied to the target output folder. If you specify --render_boxes,
bounding boxes will be rendered on the output images. Because this is no longer strictly
a copy operation, this may result in the loss of metadata. More accurately, this *may*
result in the loss of some EXIF metadata; this *will* result in the loss of IPTC/XMP metadata.
Rendering boxes also makes this script a lot slower.
**Classification-based separation**
If you have a results file with classification data, you can also specify classes to put
in their own folders, within the "animals" folder, like this:
``--classification_thresholds "deer=0.75,cow=0.75"``
So, e.g., you might get:
c:/out/animals/deer/a/x/y/5.jpg
In this scenario, the folders within "animals" will be:
deer, cow, multiple, unclassified
"multiple" in this case only means "deer and cow"; if an image is classified as containing a
bird and a bear, that would end up in "unclassified", since the folder separation is based only
on the categories you provide at the command line.
No classification-based separation is done within the animal_person, animal_vehicle, or
animal_person_vehicle folders.
"""
#%% Constants and imports
import argparse
import json
import os
import shutil
import sys
import itertools
from multiprocessing.pool import ThreadPool
from functools import partial
from tqdm import tqdm
from megadetector.utils.ct_utils import args_to_object, is_float
from megadetector.detection.run_detector import get_typical_confidence_threshold_from_results
from megadetector.visualization import visualization_utils as vis_utils
friendly_folder_names = {'animal':'animals','person':'people','vehicle':'vehicles'}
# Occasionally we have near-zero confidence detections associated with COCO classes that
# didn't quite get squeezed out of the model in training. As long as they're near zero
# confidence, we just ignore them.
invalid_category_epsilon = 0.00001
default_line_thickness = 8
default_box_expansion = 3
#%% Options class
class SeparateDetectionsIntoFoldersOptions:
"""
Options used to parameterize separate_detections_into_folders()
"""
def __init__(self,threshold=None):
#: Default threshold for categories not specified in category_name_to_threshold
self.threshold = None
#: Dict mapping category names to thresholds; for example, an image with only a detection of class
#: "animal" whose confidence is greater than or equal to category_name_to_threshold['animal']
#: will be put in the "animal" folder.
self.category_name_to_threshold = {
'animal': self.threshold,
'person': self.threshold,
'vehicle': self.threshold
}
#: Number of workers to use, set to <= 1 to disable parallelization
self.n_threads = 1
#: By default, this function errors if you try to output to an existing folder
self.allow_existing_directory = False
#: By default, this function errors if any of the images specified in the results file don't
#: exist in the source folder.
self.allow_missing_files = False
#: Whether to overwrite images that already exist in the target folder; only relevant if
#: [allow_existing_directory] is True
self.overwrite = True
#: Whether to skip empty images; if this is False, empty images (i.e., images with no detections
#: above the corresponding threshold) will be copied to an "empty" folder.
self.skip_empty_images = False
#: The MD results .json file to process
self.results_file = None
#: The folder containing source images; filenames in [results_file] should be relative to this
#: folder.
self.base_input_folder = None
#: The folder to which we should write output images; see the module header comment for information
#: about how that folder will be structured.
self.base_output_folder = None
#: Should we move rather than copy?
self.move_images = False
#: Should we render boxes on the output images? Makes everything a lot slower.
self.render_boxes = False
#: Line thickness in pixels; only relevant if [render_boxes] is True
self.line_thickness = default_line_thickness
#: Box expansion in pixels; only relevant if [render_boxes] is True
self.box_expansion = default_box_expansion
#: Originally specified as a string that looks like this:
#:
#: deer=0.75,cow=0.75
#:
#: Converted internally to a dict mapping name:threshold
self.classification_thresholds = None
## Debug or internal attributes
#: Do not set explicitly; populated from data when using classification results
self.classification_category_id_to_name = None
#: Do not set explicitly; populated from data when using classification results
self.classification_categories = None
#: Used to test this script; sets a limit on the number of images to process.
self.debug_max_images = None
#: Do not set explicitly; this gets created based on [results_file]
#:
#:Dictionary mapping categories (plus combinations of categories, and 'empty') to output folders
self.category_name_to_folder = None
#: Do not set explicitly; this gets loaded from [results_file]
self.category_id_to_category_name = None
# ...__init__()
# ...class SeparateDetectionsIntoFoldersOptions
#%% Support functions
def _path_is_abs(p): return (len(p) > 1) and (p[0] == '/' or p[1] == ':')
printed_missing_file_warning = False
def _process_detections(im,options):
"""
Process all detections for a single image
May modify *im*.
"""
global printed_missing_file_warning
relative_filename = im['file']
detections = None
if 'detections' in im:
detections = im['detections']
categories_above_threshold = None
if detections is None:
assert im['failure'] is not None and len(im['failure']) > 0
target_folder = options.category_name_to_folder['failure']
else:
category_name_to_max_confidence = {}
category_names = options.category_id_to_category_name.values()
for category_name in category_names:
category_name_to_max_confidence[category_name] = 0.0
# Find the maximum confidence for each category
#
# det = detections[0]
for det in detections:
category_id = det['category']
# For zero-confidence detections, we occasionally have leftover goop
# from COCO classes
if category_id not in options.category_id_to_category_name:
print('Warning: unrecognized category {} in file {}'.format(
category_id,relative_filename))
# assert det['conf'] < invalid_category_epsilon
continue
category_name = options.category_id_to_category_name[category_id]
if det['conf'] > category_name_to_max_confidence[category_name]:
category_name_to_max_confidence[category_name] = det['conf']
# ...for each detection on this image
# Count the number of thresholds exceeded
categories_above_threshold = []
for category_name in category_names:
threshold = options.category_name_to_threshold[category_name]
assert threshold is not None
max_confidence_this_category = category_name_to_max_confidence[category_name]
if max_confidence_this_category >= threshold:
categories_above_threshold.append(category_name)
# ...for each category
categories_above_threshold.sort()
using_classification_folders = (options.classification_thresholds is not None and \
len(options.classification_thresholds) > 0)
# If this is above multiple thresholds
if len(categories_above_threshold) > 1:
# Currently "animal_person" images get put into the "animal_person" folder, even if we're
# doing species-based separation. Ideally, we would optionally put these in either the "deer"
# folder or a "deer_person" folder, but this is pretty esoteric, so not worrying about this
# for now.
target_folder = options.category_name_to_folder['_'.join(categories_above_threshold)]
elif len(categories_above_threshold) == 0:
target_folder = options.category_name_to_folder['empty']
else:
assert len(categories_above_threshold) == 1
target_folder = options.category_name_to_folder[categories_above_threshold[0]]
# Are we making species classification folders, and is this an animal?
if ('animal' in categories_above_threshold) and (using_classification_folders):
# Do we need to put this into a specific species folder?
# Find the animal-class detections that are above threshold
category_name_to_id = {v: k for k, v in options.category_id_to_category_name.items()}
animal_category_id = category_name_to_id['animal']
valid_animal_detections = [d for d in detections if \
(d['category'] == animal_category_id and \
d['conf'] >= options.category_name_to_threshold['animal'])]
# Count the number of classification categories that are above threshold for at
# least one detection
classification_categories_above_threshold = set()
# d = valid_animal_detections[0]
for d in valid_animal_detections:
if 'classifications' not in d or d['classifications'] is None:
continue
# classification = d['classifications'][0]
for classification in d['classifications']:
classification_category_id = classification[0]
classification_confidence = classification[1]
# Do we have a threshold for this category, and if so, is
# this classification above threshold?
assert options.classification_category_id_to_name is not None
classification_category_name = \
options.classification_category_id_to_name[classification_category_id]
if (classification_category_name in options.classification_thresholds) and \
(classification_confidence > \
options.classification_thresholds[classification_category_name]):
classification_categories_above_threshold.add(classification_category_name)
# ...for each classification
# ...for each detection
if len(classification_categories_above_threshold) == 0:
classification_folder_name = 'unclassified'
elif len(classification_categories_above_threshold) > 1:
classification_folder_name = 'multiple'
else:
assert len(classification_categories_above_threshold) == 1
classification_folder_name = list(classification_categories_above_threshold)[0]
target_folder = os.path.join(target_folder,classification_folder_name)
# ...if we have to deal with classification subfolders
# ...if we have 0/1/more categories above threshold
# ...if this is/isn't a failure case
source_path = os.path.join(options.base_input_folder,relative_filename)
if not os.path.isfile(source_path):
if not options.allow_missing_files:
raise ValueError('Cannot find file {}'.format(source_path))
else:
if not printed_missing_file_warning:
print('Warning: cannot find at least one file ({})'.format(source_path))
printed_missing_file_warning = True
return
target_path = os.path.join(target_folder,relative_filename)
if (not options.overwrite) and (os.path.isfile(target_path)):
return
target_dir = os.path.dirname(target_path)
os.makedirs(target_dir,exist_ok=True)
# Skip this image if it's empty and we're not processing empty images
if ((categories_above_threshold is None) or (len(categories_above_threshold) == 0)) and \
options.skip_empty_images:
return
# At this point, this image is getting copied; we may or may not also need to
# draw bounding boxes.
# Do a simple copy operation if we don't need to render any boxes
if (not options.render_boxes) or \
(categories_above_threshold is None) or \
(len(categories_above_threshold) == 0):
if options.move_images:
shutil.move(source_path,target_path)
else:
shutil.copyfile(source_path,target_path)
else:
# Open the source image
pil_image = vis_utils.load_image(source_path)
# Render bounding boxes for each category separately, because
# we allow different thresholds for each category.
category_name_to_id = {v: k for k, v in options.category_id_to_category_name.items()}
assert len(category_name_to_id) == len(options.category_id_to_category_name)
classification_label_map = None
if using_classification_folders:
classification_label_map = options.classification_categories
for category_name in categories_above_threshold:
category_id = category_name_to_id[category_name]
category_threshold = options.category_name_to_threshold[category_name]
assert category_threshold is not None
category_detections = [d for d in detections if d['category'] == category_id]
# When we're not using classification folders, remove classification
# information to maintain standard detection colors.
if not using_classification_folders:
for d in category_detections:
if 'classifications' in d:
del d['classifications']
vis_utils.render_detection_bounding_boxes(
category_detections,
pil_image,
label_map=options.detection_categories,
classification_label_map=classification_label_map,
confidence_threshold=category_threshold,
thickness=options.line_thickness,
expansion=options.box_expansion)
# ...for each category
# Try to preserve EXIF data and image quality when saving
vis_utils.exif_preserving_save(pil_image,target_path)
# ...if we don't/do need to render boxes
# ...def _process_detections()
#%% Main function
def separate_detections_into_folders(options):
"""
Given a .json file with batch processing results, separate the files in that
set of results into folders that contain animals/people/vehicles/nothing,
according to per-class thresholds. See the header comment of this module for
more details about the output folder structure.
Args:
options (SeparateDetectionsIntoFoldersOptions): parameters guiding image
separation, see the SeparateDetectionsIntoFoldersOptions documentation for specific
options.
"""
# Input validation
# Currently we don't support moving (instead of copying) when we're also rendering
# bounding boxes.
assert not (options.render_boxes and options.move_images), \
'Cannot specify both render_boxes and move_images'
# Create output folder if necessary
if (os.path.isdir(options.base_output_folder)) and \
(len(os.listdir(options.base_output_folder) ) > 0):
if options.allow_existing_directory:
print('Warning: target folder exists and is not empty... did ' + \
'you mean to delete an old version?')
else:
raise ValueError('Target folder exists and is not empty')
os.makedirs(options.base_output_folder,exist_ok=True)
# Load detection results
print('Loading detection results')
results = json.load(open(options.results_file))
images = results['images']
for im in images:
fn = im['file']
assert not _path_is_abs(fn), 'Cannot process results with absolute image paths'
print('Processing detections for {} images'.format(len(images)))
default_threshold = options.threshold
if default_threshold is None:
default_threshold = get_typical_confidence_threshold_from_results(results)
detection_categories = results['detection_categories']
options.detection_categories = detection_categories
options.category_id_to_category_name = detection_categories
# Map class names to output folders
options.category_name_to_folder = {}
options.category_name_to_folder['empty'] = os.path.join(options.base_output_folder,'empty')
options.category_name_to_folder['failure'] =\
os.path.join(options.base_output_folder,'processing_failure')
# Create all combinations of categories
category_names = list(detection_categories.values())
category_names.sort()
# category_name = category_names[0]
for category_name in category_names:
# Do we have a custom threshold for this category?
assert category_name in options.category_name_to_threshold
if options.category_name_to_threshold[category_name] is None:
options.category_name_to_threshold[category_name] = default_threshold
category_threshold = options.category_name_to_threshold[category_name]
print('Processing category {} at threshold {}'.format(category_name,category_threshold))
target_category_names = []
for c in category_names:
target_category_names.append(c)
for combination_length in range(2,len(category_names)+1):
combined_category_names = list(itertools.combinations(category_names,combination_length))
for combination in combined_category_names:
combined_name = '_'.join(combination)
target_category_names.append(combined_name)
# Create folder mappings for each category
for category_name in target_category_names:
folder_name = category_name
if category_name in friendly_folder_names:
folder_name = friendly_folder_names[category_name]
options.category_name_to_folder[category_name] = \
os.path.join(options.base_output_folder,folder_name)
# Create the actual folders
for folder in options.category_name_to_folder.values():
os.makedirs(folder,exist_ok=True)
# Handle species classification thresholds, if specified
if options.classification_thresholds is not None:
assert 'classification_categories' in results and \
results['classification_categories'] is not None, \
'Classification thresholds specified, but no classification results available'
classification_categories = results['classification_categories']
classification_category_name_to_id = {v: k for k, v in classification_categories.items()}
classification_category_id_to_name = {k: v for k, v in classification_categories.items()}
options.classification_category_id_to_name = classification_category_id_to_name
options.classification_categories = classification_categories
if isinstance(options.classification_thresholds,str):
# E.g. deer=0.75,cow=0.75
tokens = options.classification_thresholds.split(',')
classification_thresholds = {}
# token = tokens[0]
for token in tokens:
subtokens = token.split('=')
assert len(subtokens) == 2 and is_float(subtokens[1]), \
'Illegal classification threshold {}'.format(token)
classification_thresholds[subtokens[0]] = float(subtokens[1])
# ...for each token
options.classification_thresholds = classification_thresholds
# ...if classification thresholds are still in string format
# Validate the classes in the threshold list
for class_name in options.classification_thresholds.keys():
assert class_name in classification_category_name_to_id, \
'Category {} specified at the command line, but is not available in the results file'.format(
class_name)
# ...if we need to deal with classification categories
if options.n_threads <= 1 or options.debug_max_images is not None:
# i_image = 14; im = images[i_image]; im
for i_image,im in enumerate(tqdm(images)):
if options.debug_max_images is not None and i_image > options.debug_max_images:
break
_process_detections(im,options)
# ...for each image
else:
print('Starting a pool with {} threads'.format(options.n_threads))
pool = ThreadPool(options.n_threads)
process_detections_with_options = partial(_process_detections, options=options)
_ = list(tqdm(pool.imap(process_detections_with_options, images), total=len(images)))
# ...def separate_detections_into_folders
#%% Interactive driver
if False:
pass
#%%
options = SeparateDetectionsIntoFoldersOptions()
options.results_file = os.path.expanduser(
'~/data/snapshot-safari-2022-08-16-KRU-v5a.0.0_detections.json')
options.base_input_folder = os.path.expanduser('~/data/KRU/KRU_public')
options.base_output_folder = os.path.expanduser('~/data/KRU-separated')
options.n_threads = 100
options.render_boxes = True
options.allow_existing_directory = True
#%%
options = SeparateDetectionsIntoFoldersOptions()
options.results_file = os.path.expanduser('~/data/ena24-2022-06-15-v5a.0.0_megaclassifier.json')
options.base_input_folder = os.path.expanduser('~/data/ENA24/images')
options.base_output_folder = os.path.expanduser('~/data/ENA24-separated')
options.n_threads = 100
options.classification_thresholds = 'deer=0.75,cow=0.75,bird=0.75'
options.render_boxes = True
options.allow_existing_directory = True
#%%
separate_detections_into_folders(options)
#%% Testing various command-line invocations
"""
# With boxes, no classification
python separate_detections_into_folders.py ~/data/ena24-2022-06-15-v5a.0.0_megaclassifier.json ~/data/ENA24/images ~/data/ENA24-separated --threshold 0.17 --animal_threshold 0.2 --n_threads 10 --allow_existing_directory --render_boxes --line_thickness 10 --box_expansion 10
# No boxes, no classification (default)
python separate_detections_into_folders.py ~/data/ena24-2022-06-15-v5a.0.0_megaclassifier.json ~/data/ENA24/images ~/data/ENA24-separated --threshold 0.17 --animal_threshold 0.2 --n_threads 10 --allow_existing_directory
# With boxes, with classification
python separate_detections_into_folders.py ~/data/ena24-2022-06-15-v5a.0.0_megaclassifier.json ~/data/ENA24/images ~/data/ENA24-separated --threshold 0.17 --animal_threshold 0.2 --n_threads 10 --allow_existing_directory --render_boxes --line_thickness 10 --box_expansion 10 --classification_thresholds "deer=0.75,cow=0.75,bird=0.75"
# No boxes, with classification
python separate_detections_into_folders.py ~/data/ena24-2022-06-15-v5a.0.0_megaclassifier.json ~/data/ENA24/images ~/data/ENA24-separated --threshold 0.17 --animal_threshold 0.2 --n_threads 10 --allow_existing_directory --classification_thresholds "deer=0.75,cow=0.75,bird=0.75"
"""
#%% Command-line driver
def main():
parser = argparse.ArgumentParser()
parser.add_argument('results_file', type=str, help='Input .json filename')
parser.add_argument('base_input_folder', type=str, help='Input image folder')
parser.add_argument('base_output_folder', type=str, help='Output image folder')
parser.add_argument('--threshold', type=float, default=None,
help='Default confidence threshold for all categories (defaults to ' + \
'selection based on model version, other options may override this ' + \
'for specific categories)')
parser.add_argument('--animal_threshold', type=float, default=None,
help='Confidence threshold for the animal category')
parser.add_argument('--human_threshold', type=float, default=None,
help='Confidence threshold for the human category')
parser.add_argument('--vehicle_threshold', type=float, default=None,
help='Confidence threshold for vehicle category')
parser.add_argument('--classification_thresholds', type=str, default=None,
help='List of classification thresholds to use for species-based folder ' + \
'separation, formatted as, e.g., "deer=0.75,cow=0.75"')
parser.add_argument('--n_threads', type=int, default=1,
help='Number of threads to use for parallel operation (default=1)')
parser.add_argument('--allow_existing_directory', action='store_true',
help='Proceed even if the target directory exists and is not empty')
parser.add_argument('--no_overwrite', action='store_true',
help='Skip images that already exist in the target folder, must also ' + \
'specify --allow_existing_directory')
parser.add_argument('--skip_empty_images', action='store_true',
help='Do not copy empty images to the output folder')
parser.add_argument('--move_images', action='store_true',
help='Move images (rather than copying) (not recommended this if you have not ' + \
'backed up your data!)')
parser.add_argument('--render_boxes', action='store_true',
help='Render bounding boxes on output images; may result in some ' + \
'metadata not being transferred')
parser.add_argument('--line_thickness', type=int, default=default_line_thickness,
help='Line thickness (in pixels) for rendering, only meaningful if ' + \
'using render_boxes (defaults to {})'.format(
default_line_thickness))
parser.add_argument('--box_expansion', type=int, default=default_line_thickness,
help='Box expansion (in pixels) for rendering, only meaningful if ' + \
'using render_boxes (defaults to {})'.format(
default_box_expansion))
if len(sys.argv[1:])==0:
parser.print_help()
parser.exit()
args = parser.parse_args()
# Convert to an options object
options = SeparateDetectionsIntoFoldersOptions()
args_to_object(args, options)
def validate_threshold(v,name):
# print('{} {}'.format(v,name))
if v is not None:
assert v >= 0.0 and v <= 1.0, \
'Illegal {} threshold {}'.format(name,v)
validate_threshold(args.threshold,'default')
validate_threshold(args.animal_threshold,'animal')
validate_threshold(args.vehicle_threshold,'vehicle')
validate_threshold(args.human_threshold,'human')
if args.threshold is not None:
if args.animal_threshold is not None \
and args.human_threshold is not None \
and args.vehicle_threshold is not None:
raise ValueError('Default threshold specified, but all category thresholds ' + \
'also specified... not exactly wrong, but it\'s likely that you ' + \
'meant something else.')
options.category_name_to_threshold['animal'] = args.animal_threshold
options.category_name_to_threshold['person'] = args.human_threshold
options.category_name_to_threshold['vehicle'] = args.vehicle_threshold
options.overwrite = (not args.no_overwrite)
separate_detections_into_folders(options)
if __name__ == '__main__':
main()