-
Notifications
You must be signed in to change notification settings - Fork 419
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
90b358e
commit dae66a2
Showing
6 changed files
with
728 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
import re | ||
import json | ||
import time | ||
import anthropic | ||
from typing import List, Dict, Any | ||
|
||
from aios.llm_core.cores.base import BaseLLM | ||
|
||
from cerebrum.llm.communication import Response | ||
|
||
|
||
class ClaudeLLM(BaseLLM): | ||
""" | ||
ClaudeLLM class for interacting with Anthropic's Claude models. | ||
This class provides methods for processing queries using Claude models, | ||
including handling of tool calls and message formatting. | ||
Attributes: | ||
model (anthropic.Anthropic): The Anthropic client for API calls. | ||
tokenizer (None): Placeholder for tokenizer, not used in this implementation. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
llm_name: str, | ||
max_gpu_memory: Dict[int, str] = None, | ||
eval_device: str = None, | ||
max_new_tokens: int = 256, | ||
log_mode: str = "console", | ||
use_context_manager: bool = False, | ||
): | ||
""" | ||
Initialize the ClaudeLLM instance. | ||
Args: | ||
llm_name (str): Name of the Claude model to use. | ||
max_gpu_memory (Dict[int, str], optional): GPU memory configuration. | ||
eval_device (str, optional): Device for evaluation. | ||
max_new_tokens (int, optional): Maximum number of new tokens to generate. | ||
log_mode (str, optional): Logging mode, defaults to "console". | ||
""" | ||
super().__init__( | ||
llm_name, | ||
max_gpu_memory=max_gpu_memory, | ||
eval_device=eval_device, | ||
max_new_tokens=max_new_tokens, | ||
log_mode=log_mode, | ||
use_context_manager=use_context_manager, | ||
) | ||
|
||
def load_llm_and_tokenizer(self) -> None: | ||
""" | ||
Load the Anthropic client for API calls. | ||
""" | ||
self.model = anthropic.Anthropic() | ||
self.tokenizer = None | ||
|
||
def convert_tools(self, tools): | ||
anthropic_tools = [] | ||
# print(tools) | ||
for tool in tools: | ||
anthropic_tool = tool["function"] | ||
anthropic_tool["input_schema"] = anthropic_tool["parameters"] | ||
anthropic_tool.pop("parameters") | ||
anthropic_tools.append(anthropic_tool) | ||
# print(anthropic_tools) | ||
return anthropic_tools | ||
|
||
def address_syscall(self, llm_syscall, temperature: float = 0.0) -> None: | ||
""" | ||
Process a request_data using the Claude model. | ||
Args: | ||
agent_request (Any): The agent process containing the request_data and tools. | ||
temperature (float, optional): Sampling temperature for generation. | ||
Raises: | ||
AssertionError: If the model name doesn't contain 'claude'. | ||
anthropic.APIError: If there's an error with the Anthropic API call. | ||
Exception: For any other unexpected errors. | ||
""" | ||
assert re.search( | ||
r"claude", self.model_name, re.IGNORECASE | ||
), "Model name must contain 'claude'" | ||
llm_syscall.set_status("executing") | ||
llm_syscall.set_start_time(time.time()) | ||
messages = llm_syscall.query.messages | ||
tools = llm_syscall.query.tools | ||
|
||
self.logger.log(f"{messages}", level="info") | ||
self.logger.log( | ||
f"{llm_syscall.agent_name} is switched to executing.", level="executing" | ||
) | ||
|
||
if tools: | ||
# messages = self.tool_calling_input_format(messages, tools) | ||
tools = self.convert_tools(tools) | ||
|
||
anthropic_messages = self._convert_to_anthropic_messages(messages) | ||
self.logger.log(f"{anthropic_messages}", level="info") | ||
|
||
try: | ||
response = self.model.messages.create( | ||
model=self.model_name, | ||
messages=anthropic_messages, | ||
max_tokens=self.max_new_tokens, | ||
temperature=temperature, | ||
# tools=tools, | ||
) | ||
|
||
print(response) | ||
|
||
response_message = response.content[0].text | ||
self.logger.log(f"API Response: {response_message}", level="info") | ||
tool_calls = self.parse_tool_calls(response_message) if tools else None | ||
|
||
response = Response( | ||
response_message=response_message, tool_calls=tool_calls | ||
) | ||
|
||
# agent_request.set_response( | ||
# Response( | ||
# response_message=response_message, | ||
# tool_calls=tool_calls | ||
# ) | ||
# ) | ||
except anthropic.APIError as e: | ||
error_message = f"Anthropic API error: {str(e)}" | ||
self.logger.log(error_message, level="warning") | ||
|
||
response = Response(response_message=f"Error: {str(e)}", tool_calls=None) | ||
|
||
# agent_request.set_response( | ||
# Response( | ||
# response_message=f"Error: {str(e)}", | ||
# tool_calls=None | ||
# ) | ||
# ) | ||
|
||
except Exception as e: | ||
error_message = f"Unexpected error: {str(e)}" | ||
self.logger.log(error_message, level="warning") | ||
# agent_request.set_response( | ||
# Response( | ||
# response_message=f"Unexpected error: {str(e)}", | ||
# tool_calls=None | ||
# ) | ||
# ) | ||
response = Response( | ||
response_message=f"Unexpected error: {str(e)}", tool_calls=None | ||
) | ||
|
||
return response | ||
# agent_request.set_status("done") | ||
# agent_request.set_end_time(time.time()) | ||
|
||
def _convert_to_anthropic_messages( | ||
self, messages: List[Dict[str, str]] | ||
) -> List[Dict[str, str]]: | ||
""" | ||
Convert messages to the format expected by the Anthropic API. | ||
Args: | ||
messages (List[Dict[str, str]]): Original messages. | ||
Returns: | ||
List[Dict[str, str]]: Converted messages for Anthropic API. | ||
""" | ||
anthropic_messages = [] | ||
for message in messages: | ||
if message["role"] == "system": | ||
anthropic_messages.append( | ||
{"role": "user", "content": f"System: {message['content']}"} | ||
) | ||
anthropic_messages.append( | ||
{ | ||
"role": "assistant", | ||
"content": "Understood. I will follow these instructions.", | ||
} | ||
) | ||
else: | ||
anthropic_messages.append( | ||
{ | ||
"role": "user" if message["role"] == "user" else "assistant", | ||
"content": message["content"], | ||
} | ||
) | ||
return anthropic_messages | ||
|
||
def tool_calling_output_format( | ||
self, tool_calling_messages: str | ||
) -> List[Dict[str, Any]]: | ||
""" | ||
Parse the tool calling output from the model's response. | ||
Args: | ||
tool_calling_messages (str): The model's response containing tool calls. | ||
Returns: | ||
List[Dict[str, Any]]: Parsed tool calls, or None if parsing fails. | ||
""" | ||
try: | ||
json_content = json.loads(tool_calling_messages) | ||
if ( | ||
isinstance(json_content, list) | ||
and len(json_content) > 0 | ||
and "name" in json_content[0] | ||
): | ||
return json_content | ||
except json.JSONDecodeError: | ||
pass | ||
return super().tool_calling_output_format(tool_calling_messages) |
Oops, something went wrong.