-
Notifications
You must be signed in to change notification settings - Fork 1
/
stacked.py
229 lines (170 loc) · 7.52 KB
/
stacked.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
import pandas as pd
def sigmoid(x):
return 1. / (1 + np.exp(-x))
def sigmoid_der(x):
s = 1. / (1 + np.exp(-x))
return s * (1. - s)
def one_hot_encode_labels(labels):
n_unique = 10
output = []
for label in labels:
a = np.zeros(n_unique)
a[label] = 1
output.append(a)
return np.asarray(output)
def encode(x, params):
return sigmoid(np.dot(x, params["W1"].T) + params["b1"])
def decode(h, params):
return sigmoid(np.dot(h, params["W2"].T) + params["b2"])
def cost_function(x, z):
eps = 1e-10
return - np.sum((x * np.log(z + eps) + (1. - x) * np.log(1. - z + eps)))
def calc_gradient(x_batch, y_expected, params):
data_batch = x_batch
p = encode(data_batch, params)
y = decode(p, params)
cost = np.sum(cost_function(y_expected, y))
delta1 = y - y_expected
dw2 = np.sum(np.dot(delta1.T, p), axis=0)
db2 = np.sum(delta1, axis=0)
delta2 = np.sum(np.dot(params["W2"].T, delta1.T) * sigmoid_der(p).T, axis=0)
dw1 = np.sum(np.dot(delta2, data_batch), axis=0)
db1 = np.sum(delta2, axis=0)
cost /= len(x_batch)
dw1 /= len(x_batch)
dw2 /= len(x_batch)
db1 /= len(x_batch)
db2 /= len(x_batch)
return cost, dw1, dw2, db1, db2
def train(X, Y, params, epochs=1, batch_size=128, alpha=0.1):
costs = []
batch_num = len(X) // batch_size
for epoch in range(epochs):
total_cost = 0.0
for i in range(batch_num):
batch = X[i * batch_size: (i + 1) * batch_size]
batch_output = Y[i * batch_size: (i + 1) * batch_size]
cost, gradW1, gradW2, gradb1, gradb2 = calc_gradient(batch, batch_output, params)
total_cost += cost
params["W1"] -= alpha * gradW1
params["W2"] -= alpha * gradW2
params["b1"] -= alpha * gradb1
params["b2"] -= alpha * gradb2
costs.append((1. / batch_num) * total_cost)
def stacked_autoencoder_transform(x, params1, params2, params3):
L1 = encode(x, params1)
L2 = encode(L1, params2)
L3 = encode(L2, params3)
return L3
def get_n_samples_per_class(data, labels, n):
samples = []
label = []
for i in range(10):
s = data[labels == i]
l = labels[labels == i]
l = l[:n]
s = s[:n]
samples.append(s)
label.append(l)
return np.asarray(samples).reshape(n * 10, 784), np.asarray(label).reshape(n * 10, 1)
def predict(data, params):
l1 = encode(data, params)
output = decode(l1, params)
return output
def test_accuracy(testing_data, testing_labels, params):
predicted_output = predict(testing_data, params)
count = 0
for i in range(len(testing_data)):
if np.argmax(predicted_output[i]) == np.argmax(testing_labels[i]):
count += 1
acc = count * 100 / len(testing_data)
return acc
# Training data
print("Reading training data...")
raw_training_data = pd.read_csv("../dataset/fashion-mnist_train.csv")
training_data = np.asarray(raw_training_data.loc[:, raw_training_data.columns != 'label'], dtype=np.float)
training_labels = np.asarray(raw_training_data['label'])
print("Reading testing data...")
# Testing data
raw_testing_data = pd.read_csv("../dataset/fashion-mnist_test.csv")
testing_data = np.asarray(raw_testing_data.loc[:, raw_testing_data.columns != 'label'], dtype=np.float)
testing_labels = np.asarray(raw_testing_data['label'])
testing_labels = one_hot_encode_labels(testing_labels)
print("Training", training_data.shape, training_labels.shape)
print("Testing", testing_data.shape, testing_labels.shape)
training_data = training_data / 255.0
testing_data = testing_data / 255.0
print("Training Layer 1")
# 728 to 500
n_inputs = training_data.shape[1]
n_output = n_inputs
n_hidden = 500
params_layer_1 = {
"W1": np.asarray(np.random.uniform(low=(-1. / n_inputs), high=(1. / n_inputs), size=(n_hidden, n_inputs))),
"W2": np.asarray(np.random.uniform(low=(-1. / n_hidden), high=(1. / n_hidden), size=(n_output, n_hidden))),
"b1": np.zeros((n_hidden)),
"b2": np.zeros((n_output))}
train(training_data, training_data, params_layer_1, epochs=5)
layer_1_output = encode(training_data, params_layer_1)
print("Training Layer 2")
# 500 to 300
n_inputs = 500
n_output = n_inputs
n_hidden = 300
params_layer_2 = {
"W1": np.asarray(np.random.uniform(low=(-1. / n_inputs), high=(1. / n_inputs), size=(n_hidden, n_inputs))),
"W2": np.asarray(np.random.uniform(low=(-1. / n_hidden), high=(1. / n_hidden), size=(n_output, n_hidden))),
"b1": np.zeros((n_hidden)),
"b2": np.zeros((n_output))}
train(layer_1_output, layer_1_output, params_layer_2, epochs=5)
layer_2_output = encode(layer_1_output, params_layer_2)
print("Training Layer 3")
# 300 to 100
n_inputs = 300
n_output = n_inputs
n_hidden = 100
params_layer_3 = {
"W1": np.asarray(np.random.uniform(low=(-1. / n_inputs), high=(1. / n_inputs), size=(n_hidden, n_inputs))),
"W2": np.asarray(np.random.uniform(low=(-1. / n_hidden), high=(1. / n_hidden), size=(n_output, n_hidden))),
"b1": np.zeros((n_hidden)),
"b2": np.zeros((n_output))}
train(layer_2_output, layer_2_output, params_layer_3, epochs=5)
one_sample_per_class_data, one_sample_per_class_labels = get_n_samples_per_class(training_data, training_labels, 1)
five_sample_per_class_data, five_sample_per_class_labels = get_n_samples_per_class(training_data, training_labels, 5)
# One - Hot Encoding
one_sample_per_class_labels = one_hot_encode_labels(one_sample_per_class_labels.tolist())
five_sample_per_class_labels = one_hot_encode_labels(five_sample_per_class_labels.tolist())
# Reducing size using stacked AE
one_sample_reduced_training_data = stacked_autoencoder_transform(one_sample_per_class_data, params_layer_1,
params_layer_2, params_layer_3)
five_sample_reduced_training_data = stacked_autoencoder_transform(five_sample_per_class_data, params_layer_1,
params_layer_2, params_layer_3)
testing_data = stacked_autoencoder_transform(testing_data, params_layer_1, params_layer_2, params_layer_3)
# Classifier
n_inputs = 100
n_output = 10
n_hidden = 100
params_classifier_one_sample = {
"W1": np.asarray(np.random.uniform(low=(-1. / n_inputs), high=(1. / n_inputs), size=(n_hidden, n_inputs))),
"W2": np.asarray(np.random.uniform(low=(-1. / n_hidden), high=(1. / n_hidden), size=(n_output, n_hidden))),
"b1": np.zeros((n_hidden)),
"b2": np.zeros((n_output))}
print("Training Classifier with one sample per class")
train(one_sample_reduced_training_data, one_sample_per_class_labels, params_classifier_one_sample, batch_size=1,
epochs=10)
params_classifier_five_sample = {
"W1": np.asarray(np.random.uniform(low=(-1. / n_inputs), high=(1. / n_inputs), size=(n_hidden, n_inputs))),
"W2": np.asarray(np.random.uniform(low=(-1. / n_hidden), high=(1. / n_hidden), size=(n_output, n_hidden))),
"b1": np.zeros((n_hidden)),
"b2": np.zeros((n_output))}
print("Training Classifier with five samples per class")
train(one_sample_reduced_training_data, one_sample_per_class_labels, params_classifier_five_sample, batch_size=1,
epochs=10)
# Testing
# Testing model with one sample per class
acc = test_accuracy(testing_data, testing_labels, params_classifier_one_sample)
print("Test accuracy with one training sample per class", acc)
# Testing model with five samples per class
acc = test_accuracy(testing_data, testing_labels, params_classifier_five_sample)
print("Test accuracy with five training samples per class", acc)