From 1ed6134e68ea5f9146956acf18e05a4078946756 Mon Sep 17 00:00:00 2001 From: TheColdIce Date: Wed, 30 Oct 2024 09:09:03 +0000 Subject: [PATCH] funcs for vizulaizing the data --- flib/vizualize/data.py | 317 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 317 insertions(+) create mode 100644 flib/vizualize/data.py diff --git a/flib/vizualize/data.py b/flib/vizualize/data.py new file mode 100644 index 0000000..a132ade --- /dev/null +++ b/flib/vizualize/data.py @@ -0,0 +1,317 @@ +import os +import pandas as pd +import seaborn as sns +import matplotlib.pyplot as plt +import argparse +import numpy as np + + +def edge_label_hist(df:pd.DataFrame, banks:list, file:str): + fig, ax = plt.subplots() + width = 0.30 + x = np.array([-1*width/2, width/2]) + csv = {'bank': [], 'neg_count': [], 'pos_count': [], 'neg_ratio': [], 'pos_ratio': []} + for i, bank in enumerate(banks): + df_bank = df[(df['bankOrig'] == bank) & (df['bankDest'] == bank)] + n_pos = df_bank[df_bank['isSAR'] == 1].shape[0] + n_neg = df_bank[df_bank['isSAR'] == 0].shape[0] + rects = ax.bar(x+i, np.array([n_neg, n_pos]), width, color=['C0', 'C1'], label=['neg', 'pos'], zorder=3) + ax.bar_label(rects, [f'{n_neg/(n_neg+n_pos):.4f}', f'{n_pos/(n_neg+n_pos):.4f}'], padding=1) + csv['bank'].append(bank) + csv['neg_count'].append(n_neg) + csv['pos_count'].append(n_pos) + csv['neg_ratio'].append(n_neg/(n_neg+n_pos)) + csv['pos_ratio'].append(n_pos/(n_neg+n_pos)) + ax.grid(axis='y', zorder=0) + ax.set_yscale('log') + ax.set_xticks(np.arange(len(banks)), banks) + ax.legend(rects, ['neg', 'pos'], ncols=2) + plt.tight_layout(pad=2.0) + plt.title('Edge label distribution') + plt.savefig(file) + plt.close() + df = pd.DataFrame(csv) + df.to_csv(file.replace('.png', '.csv'), index=False) + + + +def node_label_hist(df:pd.DataFrame, banks:list, file:str): + fig, ax = plt.subplots() + width = 0.30 + x = np.array([-1*width/2, width/2]) + csv = {'bank': [], 'neg_count': [], 'pos_count': [], 'neg_ratio': [], 'pos_ratio': []} + for i, bank in enumerate(banks): + df_bank = df[(df['bankOrig'] == bank) & (df['bankDest'] == bank)] + df_bank = pd.concat([df_bank[['nameOrig', 'isSAR']].rename(columns={'nameOrig': 'name'}), df_bank[['nameDest', 'isSAR']].rename(columns={'nameDest': 'name'})]) + gb = df_bank.groupby('name') + accts = gb['isSAR'].max() + n_pos = accts[accts == 1].shape[0] + n_neg = accts[accts == 0].shape[0] + rects = ax.bar(x+i, np.array([n_neg, n_pos]), width, color=['C0', 'C1'], label=['neg', 'pos'], zorder=3) + ax.bar_label(rects, [f'{n_neg/(n_neg+n_pos):.4f}', f'{n_pos/(n_neg+n_pos):.4f}'], padding=1) + csv['bank'].append(bank) + csv['neg_count'].append(n_neg) + csv['pos_count'].append(n_pos) + csv['neg_ratio'].append(n_neg/(n_neg+n_pos)) + csv['pos_ratio'].append(n_pos/(n_neg+n_pos)) + ax.grid(axis='y', zorder=0) + ax.set_yscale('log') + ax.set_xticks(np.arange(len(banks)), banks) + ax.legend(rects, ['neg', 'pos'], ncols=2) + plt.tight_layout(pad=2.0) + plt.title('Node label distribution') + plt.savefig(file) + plt.close() + df = pd.DataFrame(csv) + df.to_csv(file.replace('.png', '.csv'), index=False) + + +def balance_curves(df:pd.DataFrame, file:str): + x = np.arange(df['step'].min(), df['step'].max()+1) + accts = pd.concat([df[['nameOrig', 'isSAR']].rename(columns={'nameOrig': 'name'}), df[['nameDest', 'isSAR']].rename(columns={'nameDest': 'name'})]) + gb = accts.groupby('name') + accts = gb['isSAR'].max() + accts = accts.drop([-1, -2]) + neg_accts = accts[accts == 0].sample(3).index.tolist() + pos_accts = accts[accts == 1].sample(3).index.tolist() + fig, ax = plt.subplots() + csv = {'step': x} + for acct in neg_accts: + in_txs = df[df['nameDest'] == acct][['step', 'newbalanceDest']].rename(columns={'newbalanceDest': 'balance'}) + out_txs = df[df['nameOrig'] == acct][['step', 'newbalanceOrig']].rename(columns={'newbalanceOrig': 'balance'}) + txs = pd.concat([in_txs, out_txs]) + txs = txs.sort_values('step') + y = np.interp(x, txs['step'], txs['balance']) + ax.step(x, y, where='pre', color='C0', label=acct) + csv[f'{acct}'] = y + for acct in pos_accts: + in_txs = df[df['nameDest'] == acct][['step', 'newbalanceDest']].rename(columns={'newbalanceDest': 'balance'}) + out_txs = df[df['nameOrig'] == acct][['step', 'newbalanceOrig']].rename(columns={'newbalanceOrig': 'balance'}) + txs = pd.concat([in_txs, out_txs]) + txs = txs.sort_values('step') + y = np.interp(x, txs['step'], txs['balance']) + ax.step(x, y, where='pre', color='C1', label=acct) + csv[f'{acct}(sar)'] = y + ax.legend() + ax.grid() + ax.set_xlabel('step') + ax.set_ylabel('balance') + plt.title('Balance curves') + plt.tight_layout(pad=2.0) + plt.savefig(file) + plt.close() + df = pd.DataFrame(csv) + df.to_csv(file.replace('.png', '.csv'), index=False) + + +def pattern_hist(df:pd.DataFrame, file:str): + # OBS! This doesnt show the dist of patterns, it shows the dist of edges belonging to a certain pattern + # TODO: Change this to show the dist of patterns. Unclear how... + df = df[df['bankOrig'] != 'source'] + df = df[df['bankDest'] != 'sink'] + neg_pattern_count = df[df['isSAR'] == 0]['modelType'].value_counts() + pos_pattern_count = df[df['isSAR'] == 1]['modelType'].value_counts() + neg_map = {0: 'single', 1: 'fan out', 2: 'fan in', 9: 'forward', 10: 'mutual', 11: 'periodical'} + pos_map = {1: 'fan out', 2: 'fan out', 3: 'cycle', 4: 'bipartite', 5: 'stack', 6: 'random', 7: 'scatter gather', 8: 'gather scatter'} + fig, ax = plt.subplots() + width = 0.30 + x = 0 + neg_names = [] + csv = {'pattern': [], 'count': []} + for pattern, count in neg_pattern_count.items(): + neg_names.append(neg_map[pattern]) + rect = ax.bar(x, count, width, color='C0', zorder=3) + ax.bar_label(rect, [f'{count}'], padding=1) + csv['pattern'].append(neg_map[pattern]) + csv['count'].append(count) + x += 1 + pos_names = [] + for pattern, count in pos_pattern_count.items(): + pos_names.append(pos_map[pattern]) + rect = ax.bar(x, count, width, color='C1', zorder=3) + ax.bar_label(rect, [f'{count}'], padding=1) + x += 1 + csv['pattern'].append(f'{pos_map[pattern]} (sar)') + csv['count'].append(count) + ax.grid(axis='y', zorder=0) + ax.set_yscale('log') + ax.set_xticks(np.arange(len(neg_names)+len(pos_names)), neg_names+pos_names) + neg_proxy = plt.Rectangle((0, 0), 1, 1, fc="C0") # Blue box for 'neg' + pos_proxy = plt.Rectangle((0, 0), 1, 1, fc="C1") # Orange box for 'pos' + ax.legend([neg_proxy, pos_proxy], ['neg', 'pos']) + plt.xticks(rotation=45, ha='right') + plt.tight_layout(pad=2.0) + plt.title('Pattern distribution') + plt.savefig(file) + plt.close() + df = pd.DataFrame(csv) + df.to_csv(file.replace('.png', '.csv'), index=False) + + +def amount_hist(df:pd.DataFrame, file:str): + df = df[df['bankOrig'] != 'source'] + df = df[df['bankDest'] != 'sink'] + df = df[df['amount'] < 30000] # TODO: remove this, here now because 3_banks_homo_mid contains some very high sar txs, which it shouldn't + fig, ax = plt.subplots() + hist_neg = sns.histplot(df[df['isSAR']==0], x='amount', binwidth=100, stat='proportion', kde=True, ax=ax, color='C0') + hist_pos = sns.histplot(df[df['isSAR']==1], x='amount', binwidth=100, stat='proportion', kde=True, ax=ax, color='C1') + ax.grid(axis='y') + #ax.set_yscale('log') + ax.legend(['neg', 'pos']) + plt.tight_layout(pad=2.0) + plt.title('Amount distribution') + plt.savefig(file) + plt.close() + + +def spending_hist(df:pd.DataFrame, file:str): + df = df[df['bankDest'] == 'sink'] + fig, ax = plt.subplots() + sns.histplot(df[df['isSAR']==0], x='amount', binwidth=3000, stat='proportion', kde=False, ax=ax, color='C0') + sns.histplot(df[df['isSAR']==1], x='amount', binwidth=3000, stat='proportion', kde=False, ax=ax, color='C1') + ax.grid(axis='y') + ax.set_yscale('log') + ax.legend(['neg', 'pos']) + plt.tight_layout(pad=2.0) + plt.title('Spending distribution') + plt.savefig(file) + plt.close() + + +def n_txs_hist(df:pd.DataFrame, file:str): + df = df[df['bankOrig'] != 'source'] + df = df[df['bankDest'] != 'sink'] + df_in = df[['amount', 'nameDest', 'isSAR']].rename(columns={'nameDest': 'name'}) + df_out = df[['amount', 'nameOrig', 'isSAR']].rename(columns={'nameOrig': 'name'}) + df = pd.concat([df_in, df_out]) + d = {} + gb = df.groupby('name') + d['n_txs'] = gb['amount'].count() + d['isSAR'] = gb['isSAR'].max() + df = pd.concat(d, axis=1) + df_neg = df[df['isSAR'] == 0] + df_pos = df[df['isSAR'] == 1] + + fig, ax = plt.subplots() + sns.histplot(df_neg, x='n_txs', binwidth=1, stat='proportion', kde=True, ax=ax, color='C0', zorder=3) + sns.histplot(df_pos, x='n_txs', binwidth=1, stat='proportion', kde=True, ax=ax, color='C1', zorder=3) + ax.grid(axis='y', zorder=0) + ax.set_xscale('log') + ax.legend(['neg', 'pos']) + plt.tight_layout(pad=2.0) + plt.title('Number of transactions distribution') + plt.savefig(file) + plt.close() + + +def n_spending_hist(df:pd.DataFrame, file:str): + df = df[df['bankDest'] == 'sink'] + d = {} + gb = df.groupby('nameOrig') + d['n_spending_txs'] = gb['amount'].count() + d['isSAR'] = gb['isSAR'].max() + df = pd.concat(d, axis=1) + df_neg = df[df['isSAR'] == 0] + df_pos = df[df['isSAR'] == 1] + + fig, ax = plt.subplots() + sns.histplot(df_neg, x='n_spending_txs', binwidth=1, stat='proportion', kde=False, ax=ax, color='C0', zorder=3) + sns.histplot(df_pos, x='n_spending_txs', binwidth=1, stat='proportion', kde=False, ax=ax, color='C1', zorder=3) + ax.grid(axis='y', zorder=0) + #ax.set_xscale('log') + ax.legend(['neg', 'pos']) + plt.tight_layout(pad=2.0) + plt.title('Number of spending transactions distribution') + plt.savefig(file) + + +def powerlaw_degree_dist(df:pd.DataFrame, file:str): + # OBS! This dist is not equivelent to the dist of the "blueprint". Here we look at all txs, we don't aggregate the txs between two accounts into one "edge". + # TODO: Change this to show the dist of the "blueprint". + df = df[df['bankOrig'] != 'source'] + df = df[df['bankDest'] != 'sink'] + df_in = df[['amount', 'nameDest', 'isSAR']].rename(columns={'nameDest': 'name'}) + df_out = df[['amount', 'nameOrig', 'isSAR']].rename(columns={'nameOrig': 'name'}) + df = pd.concat([df_in, df_out]) + d = {} + gb = df.groupby('name') + d['degree'] = gb['amount'].count() + d['isSAR'] = gb['isSAR'].max() + df = pd.concat(d, axis=1) + df_neg = df[df['isSAR'] == 0]['degree'].value_counts().reset_index() + df_pos = df[df['isSAR'] == 1]['degree'].value_counts().reset_index() + + def func(x, scale, gamma): + return scale * np.power(x, -gamma) + + plt.figure(figsize=(10, 10)) + x = np.linspace(1, 1000, 1000) + + counts = df_neg['count'].values + degrees = df_neg['degree'].values + probs = counts / counts.sum() + log_degrees = np.log(degrees) + log_probs = np.log(probs) + coeffs = np.polyfit(log_degrees, log_probs, 1) + gamma, scale = coeffs + plt.plot(x, func(x, np.exp(scale), -gamma), label=f'pareto sampling fit\n gamma={-gamma:.2f}\n scale={np.exp(scale):.2f}', color='C0') + plt.scatter(degrees, probs, label='original neg', color='C0') + + counts = df_pos['count'].values + degrees = df_pos['degree'].values + probs = counts / counts.sum() + log_degrees = np.log(degrees) + log_probs = np.log(probs) + coeffs = np.polyfit(log_degrees, log_probs, 1) + gamma, scale = coeffs + plt.plot(x, func(x, np.exp(scale), -gamma), label=f'pareto sampling fit\n gamma={-gamma:.2f}\n scale={np.exp(scale):.2f}', color='C1') + plt.scatter(degrees, probs, label='original pos', color='C1') + + plt.yscale('log') + plt.xscale('log') + plt.xlabel('log(degree)') + plt.ylabel('log(probability)') + plt.legend() + plt.grid() + plt.title('Powerlaw degree distribution') + plt.savefig(file) + + +def graph(df:pd.DataFrame, file:str): + pass + + +def plot(df:pd.DataFrame, plot_dir:str): + banks = pd.concat([df['bankOrig'], df['bankDest']]).unique().tolist() + if 'source' in banks: + banks.remove('source') + if 'sink' in banks: + banks.remove('sink') + edge_label_hist(df, banks, os.path.join(plot_dir, 'edge_label_hist.png')) + node_label_hist(df, banks, os.path.join(plot_dir, 'node_label_hist.png')) + for bank in banks: + os.makedirs(os.path.join(plot_dir, bank), exist_ok=True) + df_bank = df[(df['bankOrig'] == bank) | (df['bankDest'] == bank)] + balance_curves(df_bank, os.path.join(plot_dir, bank, 'balance_curves.png')) + pattern_hist(df_bank, os.path.join(plot_dir, bank, 'pattern_hist.png')) + amount_hist(df_bank, os.path.join(plot_dir, bank, 'amount_hist.png')) + spending_hist(df_bank, os.path.join(plot_dir, bank, 'spending_hist.png')) + n_txs_hist(df_bank, os.path.join(plot_dir, bank, 'n_txs_hist.png')) + n_spending_hist(df_bank, os.path.join(plot_dir, bank, 'n_spending_hist.png')) + powerlaw_degree_dist(df_bank, os.path.join(plot_dir, bank, 'powerlaw_degree_dist.png')) + graph(df_bank, os.path.join(plot_dir, bank, 'graph.png')) + + +def main(tx_log:str, plot_dir:str): + np.random.seed(42) + df = pd.read_csv(tx_log) + os.makedirs(plot_dir, exist_ok=True) + plot(df, plot_dir) + +if __name__ == '__main__': + DATASET = '3_banks_homo_mid' # '30K_accts', '3_banks_homo_mid' + parser = argparse.ArgumentParser() + parser.add_argument('--tx_log', type=str, help='Path to the transaction log', default=f'/home/edvin/Desktop/flib/experiments/data/{DATASET}/tx_log.csv') + parser.add_argument('--plot_dir', type=str, help='Path to the directory where the plots will be saved', default=f'/home/edvin/Desktop/flib/experiments/results/{DATASET}/data') + args = parser.parse_args() + main(args.tx_log, args.plot_dir) \ No newline at end of file