-
Notifications
You must be signed in to change notification settings - Fork 546
/
crossref.json
452 lines (438 loc) · 37.4 KB
/
crossref.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
---
layout: null
---
{
"paperRef":[
{"label":"Turing:1950", "value":"Turing, A. M. 'Mind.' Mind 59.236 (1950): 433-460."},
{"label":"Berlekamp+al:1982", "value":"Wolfram, Stephen. 'Statistical mechanics of cellular automata.' Reviews of modern physics 55.3 (1983): 601."},
{"label":"Amarel:1968", "value":"Shai, Offer. 'Transforming engineering problems through graph representations.' Advanced Engineering Informatics 17.2 (2003): 77-93."},
{"label":"Pohl:1977","value":"Pohl, Lance R., et al. 'Phosgene: a metabolite of chloroform.' Biochemical and biophysical research communications 79.3 (1977): 684-691."},
{"label":"Gaschnig:1979", "value":"Gaschnig, John. 'Preliminary performance analysis of the prospector consultant system for mineral exploration.' Proceedings of the 6th international joint conference on Artificial intelligence-Volume 1. Morgan Kaufmann Publishers Inc., 1979."},
{"label":"Berliner:1979", "value":"House, William F., Karen I. Berliner, and Laurie S. Eisenberg. 'Present status and future directions of the Ear Research Institute cochlear implant program.' Acta oto-laryngologica 87.3-6 (1979): 176-184."},
{"label":"McAllester:1988", "value":"McAllester, David Allen. 'Conspiracy numbers for min-max search.' Artificial Intelligence 35.3 (1988): 287-310."},
{"label":"Russell+Wefald:1989", "value":"Russell, Stuart J., and Eric Wefald. 'On Optimal Game-Tree Search using Rational Meta-Reasoning.' IJCAI. 1989."},
{"label":"Ballard:1983", "value":"Langston, J. William, et al. 'Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.' Science 219.4587 (1983): 979-980."},
{"label":"Barwise+Etchemendy:1993", "value":"Barwise, Jon, and John Etchemendy. 'The Language of First-Order Logic Including the Macintosh Version of Tarski's World 4.0.' (1993)."},
{"label":"Kowalski:1979", "value":"Kowalski, Robert. Logic for problem solving. Vol. 7. Ediciones Díaz de Santos, 1979."},
{"label":"Smith+al:1986", "value":"Eccardt, Curtis J., and Arnold L. Smith. 'Tool elevation and bevel adjustment for direct drive power tool.' U.S. Patent No. 4,599,927. 15 Jul. 1986."},
{"label":"Fagin+al:1995", "value":"Carey, Michael J., et al. 'Towards heterogeneous multimedia information systems: The Garlic approach.' Proceedings RIDE-DOM'95. Fifth International Workshop on Research Issues in Data Engineering-Distributed Object Management. IEEE, 1995."},
{"label":"Pearl:1988", "value":"Pearl, Judea. 'Embracing causality in default reasoning.' Artificial Intelligence 35.2 (1988): 259-271."},
{"label":"Shachter:1986", "value":"Shachter, Ross D. Evaluating influence diagrams. Operations research 34.6 (1986): 871-882."},
{"label":"Bernstein:1996", "value":"Bernstein, Peter L., and Peter L. Bernstein. Against the gods: The remarkable story of risk. New York: Wiley, 1996."},
{"label":"Longley+Sankaran:2005", "value":"Longley, Neil, and Swaminathan Sankaran. 'The NHL’s overtime-loss rule: Empirically analyzing the unintended effects.' Atlantic Economic Journal 33.1 (2005): 137-138."},
{"label":"Quinlan:1986", "value":"Quinlan, J. Ross. 'Induction of decision trees.' Machine learning 1.1 (1986): 81-106."},
{"label":"Kearns+Mansour:1998", "value":"Kearns, Michael, Yishay Mansour, and Andrew Y. Ng. 'An information-theoretic analysis of hard and soft assignment methods for clustering.' Learning in graphical models. Springer, Dordrecht, 1998. 495-520."},
{"label":"Jurafsky+Martin:2000", "value":"Stolcke, Andreas, et al. 'Dialogue act modeling for automatic tagging and recognition of conversational speech.' Computational linguistics 26.3 (2000): 339-373."},
{"label":"Knight:1999", "value":"Arksey, Hilary, and Peter T. Knight. Interviewing for social scientists: An introductory resource with examples. Sage, 1999."},
{"label":"Bransford+Johnson:1973", "value":"Bransford, John D., and Marcia K. Johnson. 'Considerations of some problems of comprehension.' Visual information processing. Academic Press, 1973. 383-438."},
{"label":"Perlis:1982", "value":"Perlis, Alan J. 'Special feature: Epigrams on programming.' ACM Sigplan Notices 17.9 (1982): 7-13."},
{"label":"McAllester:1988","value":"McAllester, David Allen. 'Conspiracy numbers for min-max search.' Artificial Intelligence 35.3 (1988): 287-310."},
{"label":"Nilsson:1971","value":"Astedt, B., L. Svanberg, and I. M. Nilsson. 'Fibrin degradation products and ovarian tumours.' British medical journal 4.5785 (1971): 458-459."},
{"label":"Mostow+Prieditis:1989","value":"Mostow, Jack, and Armand Prieditis. 'Discovering admissible heuristics by abstracting and optimizing: A transformational approach.' (1989): 701-707."},
{"label":"Hansson+al:1992","value":"Bigos, STANLEY J., et al. 'A longitudinal, prospective study of industrial back injury reporting.' Clinical orthopaedics and related research 279 (1992): 21-34."},
{"label":"Blinder:1983","value":"Blinder, Alan S., and Joseph E. Stiglitz. 'Money, credit constraints, and economic activity.'' (1983)."}
]
,
"pageRef":[
{"label":"vacuum-rationality-page", "value":""},
{"label":"nqueens-page", "value":""},
{"label":"non-negative-g", "value":""},
{"label":"iterative-lengthening-page", "value":""},
{"label":"I-to-F", "value":""},
{"label":"Gaschnig-h-page", "value":""},
{"label":"wumpus-seq35-figure", "value":""},
{"label":"logical-equivalence-table", "value":""},
{"label":"backtracking-search-algorithm", "value":""},
{"label":"1cnf-belief-state-page", "value":""},
{"label":"pit-biconditional-equation", "value":""},
{"label":"subsumption-lattice-figure", "value":""},
{"label":"kinship-domain-section", "value":""},
{"label":"west-problem-page", "value":""},
{"label":"sussman-anomaly-figure", "value":""},
{"label":"set-level-page", "value":""},
{"label":"satplan-agent-algorithm", "value":""},
{"label":"romania-distances-figure", "value":""},
{"label":"logical-omniscience", "value":""},
{"label":"description-logic-ex", "value":""},
{"label":"possible-worlds-page", "value":""},
{"label":"parameter-joint-repn-equation", "value":""},
{"label":"conditional-probability-equation", "value":""},
{"label":"marginalization-equation", "value":""},
{"label":"markov-blanket-page", "value":""},
{"label":"markov-blanket-equation", "value":""},
{"label":"probit-page", "value":""},
{"label":"enumeration-algorithm", "value":""},
{"label":"CSI-page", "value":""},
{"label":"elimination-ask-algorithm", "value":""},
{"label":"rain-clustering-figure", "value":""},
{"label":"forward-backward-algorithm", "value":""},
{"label":"flawed-viterbi-page", "value":""},
{"label":"vacuum-maze-hmm2-figure", "value":""},
{"label":"kalman-one-step-equation", "value":""},
{"label":"kalman-univariate-equation", "value":""},
{"label":"battery-persistence-figure", "value":""},
{"label":"allais-page", "value":""},
{"label":"vi-contraction-equation", "value":""},
{"label":"line-game4-figure", "value":""},
{"label":"4x3-pomdp-page", "value":""},
{"label":"2state-pomdp-page", "value":""},
{"label":"DTL-algorithm", "value":""},
{"label":"logistic-regression-section", "value":""},
{"label":"dbsig-page", "value":""},
{"label":"bayes-candy-figure", "value":""},
{"label":"candy-counts-page", "value":""},
{"label":"illuminationfigure", "value":""},
{"label":"inverse-kinematics-not-unique", "value":""},
{"label":"polygon-stability-condition-page.", "value":""},
{"label":"multivalued-sensorless-page","value":""},
{"label":"backward-chaining-algorithm","value":""},
{"label":"LG-network-page","value":""},
{"label":"Fig5","value":""}
]
,
"sectionRef":[
{"label":"env-properties-subsection", "value":""},
{"label":"cyclic-plan-section", "value":""},
{"label":"conformant-section", "value":""},
{"label":"csp-structure-section", "value":""},
{"label":"pl-resolution-section", "value":""},
{"label":"successor-state-section", "value":""},
{"label":"Peano-section", "value":""},
{"label":"circuits-section", "value":""},
{"label":"kinship-domain-section", "value":""},
{"label":"canonical-distribution-section", "value":""},
{"label":"exact-inference-section", "value":""},
{"label":"hmm-localization-section", "value":""},
{"label":"VPI-section", "value":""},
{"label":"general-filtering-section", "value":" "},
{"label":"chi-squared-section", "value":" "},
{"label":"broadening-decision-tree-section", "value":""},
{"label":"learning-theory-section", "value":""},
{"label":"logistic-regression-section", "value":""},
{"label":"statistical-learning-section", "value":""},
{"label":"canonical-distribution-section", "value":""},
{"label":"passive-rl-section", "value":""}
]
,
"exerciseRef":[
{"label":"vacuum-start-exercise", "value":"2.10","link":"{{site.baseurl}}/agents-exercises/ex_10"},
{"label":"brio-exercise", "value":"3.19","link":"{{site.baseurl}}/search-exercises/ex_19"},
{"label":"tsp-mst-exercise", "value":"3.38","link":"{{site.baseurl}}/search-exercises/ex_38"},
{"label":"path-planning-agent-exercise", "value":"4.11","link":"{{site.baseurl}}/advanced-search-exercises/ex_11"},
{"label":"path-planning-exercise", "value":"3.9","link":"{{site.baseurl}}/search-exercises/ex_9"},
{"label":"two-friends-exercise", "value":"3.5","link":"{{site.baseurl}}/search-exercises/ex_5"},
{"label":"game-playing-chance-exercise","value":"5.4","link":"{{site.baseurl}}/game-playing-exercises/ex_4"},
{"label":"game-playing-monte-carlo-exercise", "value":"5.21","link":"{{site.baseurl}}/game-playing-exercises/ex_21"},
{"label":"convert-clausal-exercise", "value":"7.25","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_25"},
{"label":"telescope-exercise", "value":"14.14"},
{"label":"hmm-robust-exercise", "value":"15.7"},
{"label":"sleep1-exercise", "value":"15.15"},
{"label":"airport-id-exercise", "value":"16.21"},
{"label":"airport-au-id-exercise", "value":"16.17"},
{"label":"vacuum-rationality-exercise", "value":"2.2","link":"{{site.baseurl}}/agents-exercises/ex_2"},
{"label":"PEAS-exercise", "value":"2.5","link":"{{site.baseurl}}/agents-exercises/ex_5"},
{"label":"agent-fn-prog-exercise", "value":"2.7","link":"{{site.baseurl}}/agents-exercises/ex_7"},
{"label":"vacuum-motion-penalty-exercise", "value":"2.12","link":"{{site.baseurl}}/agents-exercises/ex_12"},
{"label":"vacuum-unknown-geog-exercise", "value":"2.13","link":"{{site.baseurl}}/agents-exercises/ex_13"},
{"label":"vacuum-bump-exercise", "value":"2.14","link":"{{site.baseurl}}/agents-exercises/ex_14"},
{"label":"vacuum-finish-exercise", "value":"2.15","link":"{{site.baseurl}}/agents-exercises/ex_15"},
{"label":"8puzzle-parity-exercise", "value":"3.6","link":"{{site.baseurl}}/search-exercises/ex_6"},
{"label":"nqueens-size-exercise", "value":"3.7","link":"{{site.baseurl}}/search-exercises/ex_7"},
{"label":"negative-g-exercise", "value":"3.10","link":"{{site.baseurl}}/search-exercises/ex_10"},
{"label":"mc-problem", "value":"3.11","link":"{{site.baseurl}}/search-exercises/ex_11"},
{"label":"graph-separation-property-exercise", "value":"3.16","link":"{{site.baseurl}}/search-exercises/ex_16"},
{"label":"vacuum-search-exercise", "value":"3.24","link":"{{site.baseurl}}/search-exercises/ex_24"},
{"label":"iterative-lengthening-exercise", "value":"3.21","link":"{{site.baseurl}}/search-exercises/ex_21"},
{"label":"search-special-case-exercise", "value":"3.25","link":"{{site.baseurl}}/search-exercises/ex_25"},
{"label":"failure-exercise", "value":"3.29","link":"{{site.baseurl}}/search-exercises/ex_29"},
{"label":"consistent-heuristic-exercise", "value":"3.37","link":"{{site.baseurl}}/search-exercises/ex_37"},
{"label":"tsp-mst-exercise", "value":"3.38","link":"{{site.baseurl}}/search-exercises/ex_38"},
{"label":"Gaschnig-h-exercise", "value":"3.39","link":"{{site.baseurl}}/search-exercises/ex_39"},
{"label":"hill-climbing-exercise", "value":"4.4","link":"{{site.baseurl}}/advanced-search-exercises/ex_4"},
{"label":"cond-plan-repeated-exercise", "value":"4.5","link":"{{site.baseurl}}/advanced-search-exercises/ex_5"},
{"label":"cond-loop-exercise", "value":"4.6","link":"{{site.baseurl}}/advanced-search-exercises/ex_6"},
{"label":"belief-state-superset-exercise", "value":"4.8","link":"{{site.baseurl}}/advanced-search-exercises/ex_8"},
{"label":"multivalued-sensorless-exercise", "value":"4.9","link":"{{site.baseurl}}/advanced-search-exercises/ex_9"},
{"label":"vacuum-solvable-exercise", "value":"4.10","link":"{{site.baseurl}}/advanced-search-exercises/ex_10"},
{"label":"path-planning-agent-exercise", "value":"4.12","link":"{{site.baseurl}}/advanced-search-exercises/ex_12"},
{"label":"online-offline-exercise", "value":"4.13","link":"{{site.baseurl}}/advanced-search-exercises/ex_13"},
{"label":"path-planning-hc-exercise", "value":"4.15","link":"{{site.baseurl}}/advanced-search-exercises/ex_15"},
{"label":"minimax-optimality-exercise", "value":"5.7","link":"{{site.baseurl}}/game-playing-exercises/ex_7"},
{"label":"game-linear-transform", "value":"5.20","link":"{{site.baseurl}}/game-playing-exercises/ex_20"},
{"label":"crossword-exercise", "value":"6.3","link":"{{site.baseurl}}/csp-exercises/ex_3"},
{"label":"csp-definition-exercise", "value":"6.4","link":"{{site.baseurl}}/csp-exercises/ex_4"},
{"label":"nary-csp-exercise", "value":"6.6","link":"{{site.baseurl}}/csp-exercises/ex_6"},
{"label":"zebra-exercise", "value":"6.7","link":"{{site.baseurl}}/csp-exercises/ex_7"},
{"label":"ac4-exercise", "value":"6.14","link":"{{site.baseurl}}/csp-exercises/ex_14"},
{"label":"truth-value-exercise", "value":"7.3","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_3"},
{"label":"deduction-theorem-exercise", "value":"7.6","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_6"},
{"label":"logical-equivalence-exercise", "value":"7.11","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_11"},
{"label":"propositional-validity-exercise", "value":"7.12","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_12"},
{"label":"cnf-proof-exercise", "value":"7.14","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_14"},
{"label":"inf-exercise", "value":"7.16","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_16"},
{"label":"dnf-exercise", "value":"7.24","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_24"},
{"label":"minesweeper-exercise", "value":"7.28","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_28"},
{"label":"known-literal-exercise", "value":"7.29","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_29"},
{"label":"dpll-fc-exercise", "value":"7.30","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_30"},
{"label":"ss-axiom-exercise", "value":"7.34","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_34"},
{"label":"hybrid-wumpus-exercise", "value":"7.35","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_35"},
{"label":"fol-model-count-exercise", "value":"8.6","link":"{{site.baseurl}}/fol-exercises/ex_6"},
{"label":"nqueens-size-exercise", "value":"8.7","link":"{{site.baseurl}}/fol-exercises/ex_7"},
{"label":"empty-universe-exercise", "value":"8.8","link":"{{site.baseurl}}/fol-exercises/ex_8"},
{"label":"hillary-exercise", "value":"8.9","link":"{{site.baseurl}}/fol-exercises/ex_9"},
{"label":"language-determination-exercise", "value":"8.13","link":"{{site.baseurl}}/fol-exercises/ex_13"},
{"label":"Peano-completion-exercise", "value":"8.15","link":"{{site.baseurl}}/fol-exercises/ex_15"},
{"label":"wumpus-diagnostic-exercise", "value":"8.16","link":"{{site.baseurl}}/fol-exercises/ex_16"},
{"label":"kinship-exercise", "value":"8.17","link":"{{site.baseurl}}/fol-exercises/ex_17"},
{"label":"list-representation-exercise", "value":"8.20","link":"{{site.baseurl}}/fol-exercises/ex_20"},
{"label":"adjacency-exercise", "value":"8.21","link":"{{site.baseurl}}/fol-exercises/ex_21"},
{"label":"4bit-adder-exercise", "value":"8.33","link":"{{site.baseurl}}/fol-exercises/ex_33"},
{"label":"subsumption-lattice-exercise", "value":"9.6","link":"{{site.baseurl}}/logical-inference-exercises/ex_6"},
{"label":"fol-horses-exercise", "value":"9.7","link":"{{site.baseurl}}/logical-inference-exercises/ex_7"},
{"label":"csp-clause-exercise", "value":"9.10","link":"{{site.baseurl}}/logical-inference-exercises/ex_10"},
{"label":"standardize-failure-exercise", "value":"9.15","link":"{{site.baseurl}}/logical-inference-exercises/ex_15"},
{"label":"bc-trace-exercise", "value":"9.17","link":"{{site.baseurl}}/logical-inference-exercises/ex_17"},
{"label":"diff-simplify-exercise", "value":"9.21","link":"{{site.baseurl}}/logical-inference-exercises/ex_21"},
{"label":"quantifier-order-exercise", "value":"9.29","link":"{{site.baseurl}}/logical-inference-exercises/ex_29"},
{"label":"strips-airport-exercise", "value":"10.3","link":"{{site.baseurl}}/planning-exercises/ex_3"},
{"label":"negative-effects-exercise", "value":"10.7","link":"{{site.baseurl}}/planning-exercises/ex_7"},
{"label":"sussman-anomaly-exercise", "value":"10.8","link":"{{site.baseurl}}/planning-exercises/ex_8"},
{"label":"graphplan-proof-exercise", "value":"10.11","link":"{{site.baseurl}}/planning-exercises/ex_11"},
{"label":"satplan-preconditions-exercise", "value":"10.16","link":"{{site.baseurl}}/planning-exercises/ex_16"},
{"label":"strips-translation-exercise", "value":"10.17","link":"{{site.baseurl}}/planning-exercises/ex_17"},
{"label":"disjunctive-satplan-exercise", "value":"10.18","link":"{{site.baseurl}}/planning-exercises/ex_18"},
{"label":"HLA-unique-exercise", "value":"11.3","link":"{{site.baseurl}}/advanced-planning-exercises/ex_3"},
{"label":"HLA-progression-exercise", "value":"11.5","link":"{{site.baseurl}}/advanced-planning-exercises/ex_5"},
{"label":"conformant-flip-literal-exercise", "value":"11.9","link":"{{site.baseurl}}/advanced-planning-exercises/ex_9"},
{"label":"alt-vacuum-exercise", "value":"11.11","link":"{{site.baseurl}}/advanced-planning-exercises/ex_11"},
{"label":"windows-exercise", "value":"12.4","link":"{{site.baseurl}}/kr-exercises/ex_4"},
{"label":"part-decomposition-exercise", "value":"12.10","link":"{{site.baseurl}}/kr-exercises/ex_10"},
{"label":"alt-measure-exercise", "value":"12.11","link":"{{site.baseurl}}/kr-exercises/ex_11"},
{"label":"namematch-exercise", "value":"12.13","link":"{{site.baseurl}}/kr-exercises/ex_13"},
{"label":"exchange-rates-exercise", "value":"12.18","link":"{{site.baseurl}}/kr-exercises/ex_18"},
{"label":"fixed-definition-exercise", "value":"12.19","link":"{{site.baseurl}}/kr-exercises/ex_19"},
{"label":"card-on-forehead-exercise", "value":"12.22","link":"{{site.baseurl}}/kr-exercises/ex_22"},
{"label":"natural-stupidity-exercise", "value":"12.27","link":"{{site.baseurl}}/kr-exercises/ex_27"},
{"label":"shopping-grammar-exercise", "value":"12.29","link":"{{site.baseurl}}/kr-exercises/ex_29"},
{"label":"buying-exercise", "value":"12.30","link":"{{site.baseurl}}/kr-exercises/ex_30"},
{"label":"sum-to-1-exercise", "value":"13.2","link":"{{site.baseurl}}/probability-exercises/ex_2"},
{"label":"exclusive-exhaustive-exercise", "value":"13.5","link":"{{site.baseurl}}/probability-exercises/ex_5"},
{"label":"inclusion-exclusion-exercise", "value":"13.6","link":"{{site.baseurl}}/probability-exercises/ex_6"},
{"label":"unfinished-game-exercise", "value":"13.10","link":"{{site.baseurl}}/probability-exercises/ex_10"},
{"label":"independence-exercise", "value":"13.15","link":"{{site.baseurl}}/probability-exercises/ex_15"},
{"label":"conditional-bayes-exercise", "value":"13.20","link":"{{site.baseurl}}/probability-exercises/ex_20"},
{"label":"pv-xyz-exercise", "value":"13.21","link":"{{site.baseurl}}/probability-exercises/ex_21"},
{"label":"normalization-exercise", "value":"13.23","link":"{{site.baseurl}}/probability-exercises/ex_23"},
{"label":"naive-bayes-retrieval-exercise", "value":"13.28","link":"{{site.baseurl}}/probability-exercises/ex_28"},
{"label":"cpt-equivalence-exercise", "value":"14.3","link":"{{site.baseurl}}/bayes-nets-exercises/ex_3"},
{"label":"handedness-exercise", "value":"14.7","link":"{{site.baseurl}}/bayes-nets-exercises/ex_7"},
{"label":"markov-blanket-exercise", "value":"14.8","link":"{{site.baseurl}}/bayes-nets-exercises/ex_8"},
{"label":"LG-exercise", "value":"14.11","link":"{{site.baseurl}}/bayes-nets-exercises/ex_11"},
{"label":"multivalued-probit-exercise", "value":"14.12","link":"{{site.baseurl}}/bayes-nets-exercises/ex_12"},
{"label":"VE-exercise", "value":"14.18","link":"{{site.baseurl}}/bayes-nets-exercises/ex_18"},
{"label":"bn-complexity-exercise", "value":"14.19","link":"{{site.baseurl}}/bayes-nets-exercises/ex_19"},
{"label":"primitive-sampling-exercise", "value":"14.20","link":"{{site.baseurl}}/bayes-nets-exercises/ex_20"},
{"label":"gibbs-proof-exercise", "value":"14.22","link":"{{site.baseurl}}/bayes-nets-exercises/ex_22"},
{"label":"MH-exercise", "value":"14.23","link":"{{site.baseurl}}/bayes-nets-exercises/ex_23"},
{"label":"soccer-rpm-exercise", "value":"14.24","link":"{{site.baseurl}}/bayes-nets-exercises/ex_24"},
{"label":"state-augmentation-exercise", "value":"15.1","link":"{{site.baseurl}}/dbn-exercises/ex_1"},
{"label":"markov-convergence-exercise", "value":"15.2","link":"{{site.baseurl}}/dbn-exercises/ex_2"},
{"label":"island-exercise", "value":"15.3","link":"{{site.baseurl}}/dbn-exercises/ex_3"},
{"label":"flawed-viterbi-exercise", "value":"15.4","link":"{{site.baseurl}}/dbn-exercises/ex_4"},
{"label":"hmm-likelihood-exercise", "value":"15.5","link":"{{site.baseurl}}/dbn-exercises/ex_5"},
{"label":"roomba-viterbi-exercise", "value":"15.8","link":"{{site.baseurl}}/dbn-exercises/ex_8"},
{"label":"switching-kf-exercise", "value":"15.12","link":"{{site.baseurl}}/dbn-exercises/ex_12"},
{"label":"kalman-update-exercise", "value":"15.13","link":"{{site.baseurl}}/dbn-exercises/ex_13"},
{"label":"kalman-variance-exercise", "value":"15.14","link":"{{site.baseurl}}/dbn-exercises/ex_14"},
{"label":"battery-sequence-exercise", "value":"15.19","link":"{{site.baseurl}}/dbn-exercises/ex_19"},
{"label":"dbn-elimination-exercise", "value":"15.20","link":"{{site.baseurl}}/dbn-exercises/ex_20"},
{"label":"almanac-game", "value":"16.1","link":"{{site.baseurl}}/decision-theory-exercises/ex_1"},
{"label":"St-Petersburg-exercise", "value":"16.4","link":"{{site.baseurl}}/decision-theory-exercises/ex_4"},
{"label":"surprise-candy-exercise", "value":"16.6","link":"{{site.baseurl}}/decision-theory-exercises/ex_6"},
{"label":"kmax-exercise", "value":"16.13","link":"{{site.baseurl}}/decision-theory-exercises/ex_13"},
{"label":"car-vpi-exercise", "value":"16.22","link":"{{site.baseurl}}/decision-theory-exercises/ex_22"},
{"label":"nonnegative-VPI-exercise", "value":"16.23","link":"{{site.baseurl}}/decision-theory-exercises/ex_23"},
{"label":"mdp-model-exercise", "value":"17.1","link":"{{site.baseurl}}/complex-decisions-exercises/ex_1"},
{"label":"nonseparable-exercise", "value":"17.4","link":"{{site.baseurl}}/complex-decisions-exercises/ex_4"},
{"label":"reward-equivalence-exercise", "value":"17.6","link":"{{site.baseurl}}/complex-decisions-exercises/ex_6"},
{"label":"threshold-cost-exercise", "value":"17.7","link":"{{site.baseurl}}/complex-decisions-exercises/ex_7"},
{"label":"vi-contraction-exercise", "value":"17.8","link":"{{site.baseurl}}/complex-decisions-exercises/ex_8"},
{"label":"3x3-mdp-exercise", "value":"17.10","link":"{{site.baseurl}}/complex-decisions-exercises/ex_10"},
{"label":"101x3-mdp-exercise", "value":"17.11","link":"{{site.baseurl}}/complex-decisions-exercises/ex_11"},
{"label":"policy-loss-exercise", "value":"17.14","link":"{{site.baseurl}}/complex-decisions-exercises/ex_14"},
{"label":"4x3-pomdp-exercise", "value":"17.15","link":"{{site.baseurl}}/complex-decisions-exercises/ex_15"},
{"label":"2state-pomdp-exercise", "value":"17.17","link":"{{site.baseurl}}/complex-decisions-exercises/ex_17"},
{"label":"dominant-equilibrium-exercise", "value":"17.18","link":"{{site.baseurl}}/complex-decisions-exercises/ex_18"},
{"label":"infant-language-exercise", "value":"18.1","link":"{{site.baseurl}}/concept-learning-exercises/ex_1"},
{"label":"leaf-classification-exercise", "value":"18.6","link":"{{site.baseurl}}/concept-learning-exercises/ex_6"},
{"label":"nonnegative-gain-exercise", "value":"18.7","link":"{{site.baseurl}}/concept-learning-exercises/ex_7"},
{"label":"pruning-DTL-exercise", "value":"18.11","link":"{{site.baseurl}}/concept-learning-exercises/ex_11"},
{"label":"missing-value-DTL-exercise", "value":"18.12","link":"{{site.baseurl}}/concept-learning-exercises/ex_12"},
{"label":"gain-ratio-DTL-exercise", "value":"18.13","link":"{{site.baseurl}}/concept-learning-exercises/ex_13"},
{"label":"DL-expressivity-exercise", "value":"18.18","link":"{{site.baseurl}}/concept-learning-exercises/ex_18"},
{"label":"knn-mean-mode", "value":"18.19","link":"{{site.baseurl}}/concept-learning-exercises/ex_19"},
{"label":"svm-ellipse-exercise", "value":"18.21","link":"{{site.baseurl}}/concept-learning-exercises/ex_21"},
{"label":"svm-exercise", "value":"18.22","link":"{{site.baseurl}}/concept-learning-exercises/ex_22"},
{"label":"ensemble-error-exercise", "value":"18.23","link":"{{site.baseurl}}/concept-learning-exercises/ex_23"},
{"label":"linear-separability-exercise", "value":"18.26","link":"{{site.baseurl}}/concept-learning-exercises/ex_26"},
{"label":"perceptron-ML-gradient-exercise)", "value":"18.28","link":"{{site.baseurl}}/concept-learning-exercises/ex_28"},
{"label":"linear-nn-exercise", "value":"18.29","link":"{{site.baseurl}}/concept-learning-exercises/ex_29"},
{"label":"embedding-separability-exercise", "value":"18.33","link":"{{site.baseurl}}/concept-learning-exercises/ex_33"},
{"label":"dbsig-exercise", "value":"19.1","link":"{{site.baseurl}}/ilp-exercises/ex_1"},
{"label":"ir-step-exercise", "value":"19.5","link":"{{site.baseurl}}/ilp-exercises/ex_5"},
{"label":"prolog-ir-exercise", "value":"19.6","link":"{{site.baseurl}}/ilp-exercises/ex_6"},
{"label":"foil-literals-exercise", "value":"19.7","link":"{{site.baseurl}}/ilp-exercises/ex_7"},
{"label":"bayes-candy-exercise", "value":"20.1","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_1"},
{"label":"candy-trade-exercise", "value":"20.3","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_3"},
{"label":"BNB-exercise", "value":"20.5","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_5"},
{"label":"linear-regression-exercise", "value":"20.6","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_6"},
{"label":"noisy-OR-ML-exercise", "value":"20.7","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_7"},
{"label":"beta-integration-exercise", "value":"20.8","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_8"},
{"label":"ML-parents-exercise", "value":"20.9","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_9"},
{"label":"prioritized-sweeping-exercise", "value":"21.3","link":"{{site.baseurl}}/reinforcement-learning-exercises/ex_3"},
{"label":"approx-LMS-exercise", "value":"21.7","link":"{{site.baseurl}}/reinforcement-learning-exercises/ex_7"},
{"label":"10x10-exercise", "value":"21.10","link":"{{site.baseurl}}/reinforcement-learning-exercises/ex_10"},
{"label":"washing-clothes-exercise", "value":"23.1","link":"{{site.baseurl}}/nlp-english-exercises/ex_1"},
{"label":"chomsky-form-exercise", "value":"23.10","link":"{{site.baseurl}}/nlp-english-exercises/ex_10"},
{"label":"exercise-subj-verb-agree", "value":"23.12","link":"{{site.baseurl}}/nlp-english-exercises/ex_12"},
{"label":"washing-clothes2-exercise", "value":"23.17","link":"{{site.baseurl}}/nlp-english-exercises/ex_17"},
{"label":"mcl-biasdness-exercise", "value":"25.1","link":"{{site.baseurl}}/robotics-exercises/ex_1"},
{"label":"mcl-implement-exercise", "value":"25.2","link":"{{site.baseurl}}/robotics-exercises/ex_2"},
{"label":"AB-manipulator-ex", "value":"25.3","link":"{{site.baseurl}}/robotics-exercises/ex_3"},
{"label":"inverse-kinematics-exercise", "value":"25.5","link":"{{site.baseurl}}/robotics-exercises/ex_5"},
{"label":"voronoi-exercise", "value":"25.7","link":"{{site.baseurl}}/robotics-exercises/ex_7"},
{"label":"confspace-exercise", "value":"25.8","link":"{{site.baseurl}}/robotics-exercises/ex_8"},
{"label":"robot-exploration-exercise", "value":"25.10","link":"{{site.baseurl}}/robotics-exercises/ex_10"},
{"label":"subsumption-exercise", "value":"25.11","link":"{{site.baseurl}}/robotics-exercises/ex_11"},
{"label":"human-robot-exercise", "value":"25.12","link":"{{site.baseurl}}/robotics-exercises/ex_12"},
{"label":"brain-prosthesis-exercise)", "value":"26.5","link":"{{site.baseurl}}/philosophy-exercises/ex_5"}
]
,
"insideBookFigRef":[
{"label":"computer-brain-table", "value":"1.3"},
{"label":"vacuum-agent-function-table" ,"value":"2.3"},
{"label":"vacuum-world-figure" ,"value":"2.8"},
{"label":"and-or-graph-search-algorithm" ,"value":"4.11"},
{"label":"breadth-first-search-algorithm" ,"value":"3.11"},
{"label":"vacuum2-sets-figure" ,"value":"4.14"},
{"label":"maze-3x3-figure" ,"value":"4.19"},
{"label":"geometric-scene-figure" ,"value":"3.31"},
{"label":"australia-figure", "value":"6.1"},
{"label":"cryptarithmetic-figure", "value":"6.2"},
{"label":"tree-csp-figure", "value":"6.10"},
{"label":"wumpus-seq35-figure", "value":"7.4"},
{"label":"wumpus-entailment-figure", "value":"7.5"},
{"label":"logical-equivalence-table", "value":"7.11"},
{"label":"pl-horn-example-figure", "value":"7.16"},
{"label":"subsumption-lattice-figure", "value":"9.2"},
{"label":"backward-chaining-algorithm","value":"9.6"},
{"label":"airport-pddl-algorithm", "value":"10.1"},
{"label":"sussman-anomaly-figure", "value":"10.4"},
{"label":"satplan-agent-algorithm", "value":"7.22"},
{"label":"jobshop-cpm-figure", "value":"11.2"},
{"label":"ontology-figure", "value":"12.1"},
{"label":"de-finetti-table", "value":"13.2"},
{"label":"dentist-joint-table", "value":"13.3"},
{"label":"hybrid-wumpus-agent-algorithm", "value":"7.20"},
{"label":"burglary-figure", "value":"14.2"},
{"label":"enumeration-algorithm", "value":"14.22"},
{"label":"elimination-ask-algorithm", "value":"14.11"},
{"label":"rain-clustering-figure", "value":"14.12"},
{"label":"sequential-decision-world-figure", "value":"15.4"},
{"label":"sequential-decision-policies-figure", "value":"17.2"},
{"label":"DTL-algorithm", "value":"18.5"},
{"label":"restaurant-back-prop-figure", "value":"18.25"},
{"label":"family2-figure", "value":"19.11"},
{"label":"bayes-candy-figure", "value":"20.1"},
{"label":"mt-alignment-figure", "value":"23.13"},
{"label":"sr-hmm-figure", "value":"23.16"},
{"label":"illuminationfigure", "value":"24.4"},
{"label":"FigArm1", "value":"25.14"},
{"label":"vacuum-maze-ch4-figure","value":"4.18"},
{"label":"vacuum-maze-hmm2-figure","value":"15.7"},
{"label":"battery-persistence-figure", "value":"15.15"},
{"label":"airport-au-id-figure", "value":"16.7"},
{"label":"airport-id-figure", "value":"16.6"},
{"label":"line-game4-figure", "value":"5.17"},
{"label":"mixture-networks-figure","value":"20.11"},
{"label":"forward-backward-algorithm","value":"8.2"}
]
,
"chapterRef":[
{"label":"search-chapter","value":"Solving Problems by Searching"},
{"label":"csp-chapter","value":"Constraint Satisfaction Problems"},
{"label":"nlp1-chapter","value":"Natural Language for Communication"},
{"label":"nlp-english-chapter","value":"Natural Language Processing"},
{"label":"game-playing-chapter","value":"Adversarial Search"},
{"label":"concept-learning-chapter","value":"Learning From Examples"},
{"label":"complex-decisions-chapter","value":"Making Complex Decisions"},
{"label":"agents-chapter","value":"Logical Agents"},
{"label":"intro-chapter","value":"Introduction"},
{"label":"agents-chapter","value":"Intelligent Agents"},
{"label":"advanced-search-chapter","value":"Beyond Classical Search"},
{"label":"fol-chapter","value":"First Order Logic"},
{"label":"logical-inference-chapter","value":"Inference in first Order Logic"},
{"label":"planning-chapter","value":"Classical Planning"},
{"label":"advanced-planning-chapter","value":"Planning and Acting In The Real World"},
{"label":"kr-chapter","value":"Knowledge Representation"},
{"label":"probability-chapter","value":"Quantifying Uncertainity"},
{"label":"bayes-nets-chapter","value":"Probabilistic Reasoning"},
{"label":"dbn-chapter","value":"Probabilistic Reasoning Over Time"},
{"label":"decision-theory-chapter","value":"Making simple Decisions"},
{"label":"philosophy-chapter","value":"Philosophical Foundations"},
{"label":"ilp-chapter","value":"Knowledge in Learning"},
{"label":"bayesian-learning-chapter","value":"Learning Probabilistic Models"},
{"label":"reinforcement-learning-chapter","value":"Reinforcement Learning"},
{"label":"perception-chapter","value":"Perception"},
{"label":"robotics-chapter","value":"Robotics"}
]
,
"equationRef":[
{"label":"pit-biconditional-equation","value":""},
{"label":"kolmogorov-disjunction-equation", "value":""},
{"label":"basic-probability-axiom-equation", "value":""},
{"label":"proposition-probability-equation", "value":""},
{"label":"independence-equation", "value":""},
{"label":"conditional-bayes-equation", "value":""},
{"label":"meningitis-bayes-equation", "value":""},
{"label":"parameter-joint-repn-equation", "value":""},
{"label":"conditional-probability-equation", "value":""},
{"label":"marginalization-equation", "value":""},
{"label":"parameter-joint-repn-equation", "value":""},
{"label":"markov-blanket-equation", "value":""},
{"label":"matrix-filtering-equation", "value":""},
{"label":"forward-likelihood-equation", "value":""},
{"label":"kalman-one-step-equation", "value":""},
{"label":"kalman-univariate-equation", "value":""},
{"label":"vi-contraction-equation", "value":""},
{"label":"linear-gaussian-likelihood-equation", "value":""},
{"label":"beta-equation", "value":""},
{"label":"candy-true-equation", "value":""},
{"label":"candy-64-equation", "value":""},
{"label":"4x3-linear-approx-equation", "value":""},
{"label":"generalized-td-equation", "value":""},
{"label":"4x3-linear-approx-equation", "value":""}
]
,
"insideExerciseFigRef":[
{"label":"line-game4-figure","value":"","link":"{{site.baseurl}}/game-playing-exercises/#line-game4-figure"},
{"label":"3candy-figure","value":"","link":"{{site.baseurl}}/decision-theory-exercises/#3candy-figure"},
{"label":"alpha-beta-proof-figure","value":"","link":"{{site.baseurl}}/game-playing-exercises/#alpha-beta-proof-figure"},
{"label":"and-or-graph-search-algorithm-figure","value":"","link":"{{site.baseurl}}/"},
{"label":"trivial-chance-game-figure","value":"","link":"{{site.baseurl}}/game-playing-exercises/#trivial-chance-game-figure"},
{"label":"family1-figure","value":"","link":"{{site.baseurl}}/fol-exercises/#family1-figure"},
{"label":"4bit-adder-figure","value":"","link":"{{site.baseurl}}/fol-exercises/#4bit-adder-figure"},
{"label":"adder-figure","value":"","link":"{{site.baseurl}}/fol-exercises/#4bit-adder-figure"},
{"label":"shakey-figure","value":"","link":"{{site.baseurl}}/planning-exercises/#shakey-figure"},
{"label":"handedness-figure","value":"","link":"{{site.baseurl}}/bayes-nets-exercises/#handedness-figure"},
{"label":"car-starts-figure","value":"","link":"{{site.baseurl}}/bayes-nets-exercises/#car-starts-figure"},
{"label":"telescope-nets-figure","value":"","link":"{{site.baseurl}}/bayes-nets-exercises/#telescope-nets-figure"},
{"label":"politics-figure","value":"","link":"{{site.baseurl}}/bayes-nets-exercises/#politics-figure"},
{"label":"switching-kf-figure","value":"","link":"{{site.baseurl}}/dbn-exercises/#switching-kf-figure"},
{"label":"grid-mdp-figure","value":"","link":"{{site.baseurl}}/complex-decisions-exercises/#grid-mdp-figure"},
{"label":"bottle-figure","value":"","link":"{{site.baseurl}}/perception-exercises/#bottle-figure"},
{"label":"figRobot2","value":"","link":"{{site.baseurl}}/robotics-exercises/#figRobot2"},
{"label":"FigEx3","value":"","link":"{{site.baseurl}}/robotics-exercises/#FigEx2"},
{"label":"Fig5","value":"","link":"{{site.baseurl}}/robotics-exercises/#FigEx3"}
]
}