Prove each of the following assertions:
-
$\alpha$ is valid if and only if${True}{\models}\alpha$ . -
For any
$\alpha$ ,${False}{\models}\alpha$ . -
$\alpha{\models}\beta$ if and only if the sentence$(\alpha {:;{\Rightarrow}:;}\beta)$ is valid. -
$\alpha \equiv \beta$ if and only if the sentence$(\alpha{;;{\Leftrightarrow};;}\beta)$ is valid. -
$\alpha{\models}\beta$ if and only if the sentence$(\alpha \land \lnot \beta)$ is unsatisfiable.