-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinstanceGM.py
558 lines (482 loc) · 17.4 KB
/
instanceGM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
# Reference:
# 1. DivideMix: https://github.com/LiJunnan1992/DivideMix
# 2. CausalNL: https://github.com/a5507203/IDLN
# Our code is heavily based on the above-mentioned repositories.
import json
import logging
import sys
import types
from pathlib import Path
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from sklearn.mixture import GaussianMixture
from tqdm import tqdm
from mylib.models.vae import VAE_CIFAR10
from PreResNet import ResNet18
# Number of warm-up epochs
WARM_UP = 10
# Momenta
MOM1 = 0.9
MOM2 = 0.1
# Training
def train(
epoch,
net,
net2,
optimizer,
labeled_trainloader,
unlabeled_trainloader,
train_loader,
vae_model_1,
vae_model_2,
optimizer_vae,
device,
net_1=True,
):
net.train()
vae_model_1.train()
vae_model_2.eval()
net2.eval() # fix one network and train the other
criterion = SemiLoss()
unlabeled_train_iter = iter(unlabeled_trainloader)
num_iter = (len(labeled_trainloader.dataset) // args.batch_size) + 1
for batch_idx, (inputs_x, inputs_x2, labels_x, w_x) in enumerate(
labeled_trainloader
):
try:
inputs_u, inputs_u2 = unlabeled_train_iter.next()
except StopIteration:
unlabeled_train_iter = iter(unlabeled_trainloader)
inputs_u, inputs_u2 = unlabeled_train_iter.next()
batch_size = inputs_x.size(0)
# Transform label to one-hot
labels_x = torch.zeros(batch_size, args.num_class).scatter_(
1, labels_x.view(-1, 1), 1
)
w_x = w_x.view(-1, 1).type(torch.FloatTensor)
inputs_x, inputs_x2, labels_x, w_x = (
inputs_x.cuda(),
inputs_x2.cuda(),
labels_x.cuda(),
w_x.cuda(),
)
inputs_u, inputs_u2 = inputs_u.cuda(), inputs_u2.cuda()
with torch.no_grad():
# label co-guessing of unlabeled samples
outputs_u11 = net(inputs_u)
outputs_u12 = net(inputs_u2)
outputs_u21 = net2(inputs_u)
outputs_u22 = net2(inputs_u2)
pu = (
torch.softmax(outputs_u11, dim=1)
+ torch.softmax(outputs_u12, dim=1)
+ torch.softmax(outputs_u21, dim=1)
+ torch.softmax(outputs_u22, dim=1)
) / 4
ptu = pu ** (1 / args.T) # temparature sharpening
targets_u = ptu / ptu.sum(dim=1, keepdim=True) # normalize
targets_u = targets_u.detach()
# label refinement of labeled samples
outputs_x = net(inputs_x)
outputs_x2 = net(inputs_x2)
px = (
torch.softmax(outputs_x, dim=1) + torch.softmax(outputs_x2, dim=1)
) / 2
px = w_x * labels_x + (1 - w_x) * px
ptx = px ** (1 / args.T) # temparature sharpening
targets_x = ptx / ptx.sum(dim=1, keepdim=True) # normalize
targets_x = targets_x.detach()
# mixmatch
lambda_mix = np.random.beta(args.alpha, args.alpha)
lambda_mix = max(lambda_mix, 1 - lambda_mix)
all_inputs = torch.cat([inputs_x, inputs_x2, inputs_u, inputs_u2], dim=0)
all_targets = torch.cat([targets_x, targets_x, targets_u, targets_u], dim=0)
idx = torch.randperm(all_inputs.size(0))
input_a, input_b = all_inputs, all_inputs[idx]
target_a, target_b = all_targets, all_targets[idx]
mixed_input = lambda_mix * input_a + (1 - lambda_mix) * input_b
mixed_target = lambda_mix * target_a + (1 - lambda_mix) * target_b
logits = net(mixed_input)
logits_x = logits[: batch_size * 2]
logits_u = logits[batch_size * 2 :]
Lx, Lu, lamb = criterion(
logits_x,
mixed_target[: batch_size * 2],
logits_u,
mixed_target[batch_size * 2 :],
epoch + batch_idx / num_iter,
WARM_UP,
)
# regularization
prior = torch.ones(args.num_class) / args.num_class
prior = prior.cuda()
pred_mean = torch.softmax(logits, dim=1).mean(0)
penalty = torch.sum(prior * torch.log(prior / pred_mean))
loss_dm = Lx + lamb * Lu + penalty
vae_args.alpha_plan = [vae_args.lr] * vae_args.EPOCHS
vae_args.beta1_plan = [MOM1] * vae_args.EPOCHS
for i in range(vae_args.epoch_decay_start, vae_args.EPOCHS):
vae_args.alpha_plan[i] = (
float(vae_args.EPOCHS - i)
/ (vae_args.EPOlambCHS - vae_args.epoch_decay_start)
* vae_args.lr
)
vae_args.beta1_plan[i] = MOM2
vae_args.rate_schedule = np.ones(vae_args.EPOCHS) * vae_args.forget_rate
vae_args.rate_schedule[: vae_args.num_gradual] = np.linspace(
0, vae_args.forget_rate**vae_args.exponent, vae_args.num_gradual
)
adjust_learning_rate(optimizer_vae, epoch)
loss_vae, reconst_x, noisy_y_ce, uniform_x, gaussian_z = train_vae(
train_loader, device, net, vae_model_1, optimizer_vae
)
loss = loss_dm + loss_vae
# compute gradient and do SGD step
optimizer.zero_grad()
optimizer_vae.zero_grad()
loss.backward()
optimizer.step()
optimizer_vae.step()
sys.stdout.write("\r")
sys.stdout.write(
(
"%s:%.1f-%s | Epoch [%3d/%3d] Iter[%3d/%3d]\t"
" Labeled loss: %.2f Unlabeled loss: %.2f"
)
% (
args.dataset,
args.r,
args.noise_mode,
epoch,
args.num_epochs,
batch_idx + 1,
num_iter,
Lx.item(),
Lu.item(),
)
)
sys.stdout.flush()
return loss
# Train vae
def train_vae(train_loader, device, net, vae_model1, optimizer_vae):
vae_model1.train()
for _, (data, targets, _) in enumerate(train_loader):
optimizer_vae.zero_grad()
data = data.to(device)
targets = targets.to(device)
# forward
x_hat1, n_logits1, mu1, log_var1, c_logits1, y_hat1 = vae_model1(data, net)
x_hat1, n_logits1, mu1, log_var1, c_logits1, y_hat1 = (
x_hat1.cuda(),
n_logits1.cuda(),
mu1.cuda(),
log_var1.cuda(),
c_logits1.cuda(),
y_hat1.cuda(),
)
# calculate loss
vae_loss_1, l1, l2, l3, l4 = vae_loss(
x_hat1, data, n_logits1, targets, mu1, log_var1, c_logits1, y_hat1
)
return vae_loss_1, l1, l2, l3, l4
# two component GMM model
def eval_train(model, all_loss, eval_loader):
model.eval()
CE = nn.CrossEntropyLoss(reduction="none")
losses = torch.zeros(len(eval_loader.dataset))
with torch.no_grad():
for _, (inputs, targets, index) in enumerate(eval_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
loss = CE(outputs, targets)
for b in range(inputs.size(0)):
losses[index[b]] = loss[b]
losses = (losses - losses.min()) / (losses.max() - losses.min())
all_loss.append(losses)
SMALL_DATASET = 1000
if (
len(eval_loader.dataset) < SMALL_DATASET or args.r == 0.9
): # average loss over last 5 epochs to improve convergence stability
history = torch.stack(all_loss)
input_loss = history[-5:].mean(0)
input_loss = input_loss.reshape(-1, 1)
else:
input_loss = losses.reshape(-1, 1)
# fit a two-component GMM to the loss
gmm = GaussianMixture(n_components=2, max_iter=10, tol=1e-2, reg_covar=5e-4)
gmm.fit(input_loss)
prob = gmm.predict_proba(input_loss)
prob = prob[:, gmm.means_.argmin()]
return prob, all_loss
# Testing
def test(epoch, net1, net2, test_loader):
net1.eval()
net2.eval()
correct = 0
total = 0
with torch.no_grad():
for _, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs1 = net1(inputs)
outputs2 = net2(inputs)
outputs = outputs1 + outputs2
_, predicted = torch.max(outputs, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
acc = 100.0 * correct / total
logging.info("\n| Test Epoch #%d\t Accuracy: %.2f%%\n" % (epoch, acc))
# %%
def linear_rampup(current, warm_up, rampup_length=16):
current = np.clip((current - warm_up) / rampup_length, 0.0, 1.0)
return args.lambda_u * float(current)
# %%
class SemiLoss(object):
def __call__(self, outputs_x, targets_x, outputs_u, targets_u, epoch, warm_up):
probs_u = torch.softmax(outputs_u, dim=1)
Lx = -torch.mean(torch.sum(F.log_softmax(outputs_x, dim=1) * targets_x, dim=1))
Lu = torch.mean((probs_u - targets_u) ** 2)
return Lx, Lu, linear_rampup(epoch, warm_up)
# %%
class NegEntropy(object):
def __call__(self, outputs):
probs = torch.softmax(outputs, dim=1)
return torch.mean(torch.sum(probs.log() * probs, dim=1))
# %%
def create_model():
model = ResNet18(num_classes=args.num_class)
model = model.cuda()
return model
def warmup(epoch, net, optimizer, dataloader):
net.train()
num_iter = (len(dataloader.dataset) // dataloader.batch_size) + 1
CEloss = nn.CrossEntropyLoss()
for batch_idx, (inputs, labels, _) in enumerate(dataloader):
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = net(inputs)
loss = CEloss(outputs, labels)
loss.backward()
optimizer.step()
sys.stdout.write("\r")
sys.stdout.write(
"%s:%.1f-%s | Epoch [%3d/%3d] Iter[%3d/%3d]\t CE-loss: %.4f"
% (
args.dataset,
args.r,
args.noise_mode,
epoch,
args.num_epochs,
batch_idx + 1,
num_iter,
loss.item(),
)
)
sys.stdout.flush()
# %%
def adjust_learning_rate(optimizer, epoch):
for param_group in optimizer.param_groups:
param_group["lr"] = vae_args.alpha_plan[epoch]
param_group["betas"] = (vae_args.beta1_plan[epoch], 0.999) # Only change beta1
def log_standard_categorical(p, reduction="mean"):
"""
Calculates the cross entropy between a (one-hot) categorical vector
and a standard (uniform) categorical distribution.
:param p: one-hot categorical distribution
:return: H(p, u)
"""
# Uniform prior over y
prior = F.softmax(torch.ones_like(p), dim=1)
prior.requires_grad = False
cross_entropy = -torch.sum(p * torch.log(prior + 1e-8), dim=1)
if reduction == "mean":
cross_entropy = torch.mean(cross_entropy)
else:
cross_entropy = torch.sum(cross_entropy)
return cross_entropy
# VAE Loss
def vae_loss(x_hat, data, n_logits, targets, mu, log_var, c_logits, h_c_label):
# x loss
c_bernoulli = torch.distributions.continuous_bernoulli.ContinuousBernoulli(
probs=x_hat
)
reconstruction_losses = -c_bernoulli.log_prob(value=data) # (N, C, H, W)
l1 = torch.mean(input=reconstruction_losses) # scalar
# \tilde{y]} loss
l2 = F.cross_entropy(n_logits, targets, reduction="mean")
# uniform loss for x
l3 = -0.00001 * log_standard_categorical(h_c_label, reduction="mean")
# Gaussian loss for z
l4 = -0.0003 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
return (l1 + l2 + l3 + l4), l1, l2, l3, l4
args = types.SimpleNamespace()
vae_args = types.SimpleNamespace()
def main(loader, checkpoint_file, num_class, project_name):
args.batch_size = 64
args.lr = 0.002
args.vae_lr = 0.001
args.noise_mode = "instance"
args.alpha = 4
args.lambda_u = 25
args.p_threshold = 0.5
args.T = 0.5
args.num_epochs = 25
args.r = 0.5
args.seed = 123
args.gpuid = 0
args.num_class = num_class
args.dataset = project_name
args.z_dim = 25
# %%
logging.info("| Building net")
net1 = create_model()
net2 = create_model()
cudnn.benchmark = True
# %%
optimizer1 = optim.SGD(
net1.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4
)
optimizer2 = optim.SGD(
net2.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4
)
all_loss = [[], []] # save the history of losses from two networks
temp_ = loader.run("warmup")
img, target, _ = next(iter(temp_))
# %%
vae_args.lr = 0.001
vae_args.LOG_INTERVAL = 100
vae_args.BATCH_SIZE = args.batch_size
vae_args.EPOCHS = args.num_epochs + 1
vae_args.z_dim = args.z_dim
vae_args.dataset = args.dataset
vae_args.select_ratio = 0.25
vae_args.epoch_decay_start = 1000
vae_args.noise_rate = args.r
vae_args.forget_rate = args.r
vae_args.exponent = 1
vae_args.num_gradual = 10
vae_model1 = VAE_CIFAR10(z_dim=args.z_dim, num_classes=args.num_class)
vae_model2 = VAE_CIFAR10(z_dim=args.z_dim, num_classes=args.num_class)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = {"vae_model1": vae_model1.to(device), "vae_model2": vae_model2.to(device)}
# %%
optimizers = {
"vae1": torch.optim.Adam(model["vae_model1"].parameters(), lr=args.vae_lr),
"vae2": torch.optim.Adam(model["vae_model2"].parameters(), lr=args.vae_lr),
}
# %%
train_loader = loader.run("warmup")
# %%
vae_model1 = model["vae_model1"]
vae_model2 = model["vae_model2"]
optimizer_vae1 = optimizers["vae1"]
optimizer_vae2 = optimizers["vae2"]
epoch = 0
pbar = tqdm(desc="Epochs", total=args.num_epochs)
while epoch < args.num_epochs + 1:
lr = args.lr
if epoch >= 150:
lr /= 10
for param_group in optimizer1.param_groups:
param_group["lr"] = lr
for param_group in optimizer2.param_groups:
param_group["lr"] = lr
eval_loader = loader.run("eval_train")
if epoch < WARM_UP:
warmup_trainloader = loader.run("warmup")
logging.info("Warmup Net1")
warmup(epoch, net1, optimizer1, warmup_trainloader)
logging.info("Warmup Net2")
warmup(epoch, net2, optimizer2, warmup_trainloader)
else:
prob1, all_loss[0] = eval_train(net1, all_loss[0], eval_loader)
prob2, all_loss[1] = eval_train(net2, all_loss[1], eval_loader)
pred1 = prob1 > args.p_threshold
pred2 = prob2 > args.p_threshold
logging.info("Train Net1")
labeled_trainloader, unlabeled_trainloader = loader.run(
"train", pred2, prob2
) # co-divide
loss_1 = train(
epoch,
net1,
net2,
optimizer1,
labeled_trainloader,
unlabeled_trainloader,
train_loader,
vae_model1,
vae_model2,
optimizer_vae1,
device,
net_1=True,
) # train net1
logging.info("Train Net2")
labeled_trainloader, unlabeled_trainloader = loader.run(
"train", pred1, prob1
) # co-divide
loss_2 = train(
epoch,
net2,
net1,
optimizer2,
labeled_trainloader,
unlabeled_trainloader,
train_loader,
vae_model2,
vae_model1,
optimizer_vae2,
device,
net_1=False,
) # train net2
pbar.update()
epoch += 1
pbar.close()
checkpoint_file.parent.mkdir(parents=True, exist_ok=True)
torch.save(
{
"epoch": epoch,
"net1_state_dict": net1.state_dict(),
"net2_state_dict": net2.state_dict(),
"vae1_state_dict": vae_model1.state_dict(),
"vae2_state_dict": vae_model2.state_dict(),
"optimizer1_state_dict": optimizer1.state_dict(),
"optimizer2_state_dict": optimizer2.state_dict(),
"loss_1": loss_1,
"loss_2": loss_2,
},
checkpoint_file,
)
logging.info("Generating corrections")
corrected_scores = []
corrected_image_classes = []
net1.eval()
net2.eval()
test_loader = loader.run("eval_train")
with torch.no_grad():
for images, _, _ in test_loader:
images = images.cuda()
outputs1 = net1(images)
outputs2 = net2(images)
outputs = outputs1 + outputs2
scores, predicted = torch.max(torch.softmax(outputs, 1), 1)
corrected_scores += [score.item() for score in scores]
corrected_image_classes += [loader.classes[idx] for idx in predicted]
logging.info(f"Saving inference results for {len(corrected_scores)} images")
corrections_file_path = checkpoint_file.parent / "corrections.json"
image_paths = [
Path(imgpath).name.split("-", maxsplit=1)[1] for imgpath in loader.image_paths
]
with corrections_file_path.open("w") as corrections_file:
json.dump(
{
"corrected_paths": image_paths,
"original_labels": loader.image_classes,
"corrected_labels": corrected_image_classes,
"corrected_scores": corrected_scores,
},
corrections_file,
)