Skip to content

Latest commit

 

History

History
20 lines (13 loc) · 885 Bytes

README.md

File metadata and controls

20 lines (13 loc) · 885 Bytes

ESEKF_IMU

A python implemented error-state extended Kalman Filter. Suit for learning EKF and IMU integration.

Use simulated imu data (./data/imu_noise.txt) as input.

Output an trajectory estimated by esekf (./data/traj_esekf_out.txt) and a ground truth trajectory (./data/traj_gt_out.txt).

You can use evo to show both trajectories above.

evo_traj tum ./data/traj_esekf_out.txt --ref ./data/traj_gt_out.txt -p

trajectory

xyz

rpy

Reference

  1. Quaternion kinematics for the error-state Kalman filter
  2. State Estimation for Robotics.
  3. Probabilistic Robotics.