
Ramooflax
das pre-boot übervisor

Stéphane Duverger

EADS Innovation Works
Suresnes, FRANCE

SSTIC June 2011

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 2/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 3/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

We wanted a tool . . .

• to have control over complex systems (bios, kernel, . . .)

• running on a physical machine (x86 32 et 64 bits)

• without any software dependencies

The idea

• a hypervisor with a dedicated VM

• remotely controlled

• type 1 (bare metal)
• simple isolation
• control visible hardware
• software indepedenza !
• require startup before the VM

s.duverger :: ramooflax :: sstic 2011 4/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

We wanted a tool . . .

• to have control over complex systems (bios, kernel, . . .)

• running on a physical machine (x86 32 et 64 bits)

• without any software dependencies

The idea

• a hypervisor with a dedicated VM

• remotely controlled

• type 1 (bare metal)
• simple isolation
• control visible hardware
• software indepedenza !
• require startup before the VM

s.duverger :: ramooflax :: sstic 2011 4/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Overview of available hypervisors

Common solutions

• VirtualBox, KVM: misfit, type 2 (hosted)

• Xen: too complex to adapt/deploy

Minimalistic solutions

• bluepill, vitriol, virtdbg, hyperdbg . . .

• too intrusive, in vivo virtualization

• OS dependent

restart from scratch !

s.duverger :: ramooflax :: sstic 2011 5/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Overview of available hypervisors

Common solutions

• VirtualBox, KVM: misfit, type 2 (hosted)

• Xen: too complex to adapt/deploy

Minimalistic solutions

• bluepill, vitriol, virtdbg, hyperdbg . . .

• too intrusive, in vivo virtualization

• OS dependent

restart from scratch !

s.duverger :: ramooflax :: sstic 2011 5/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Overview of available hypervisors

Common solutions

• VirtualBox, KVM: misfit, type 2 (hosted)

• Xen: too complex to adapt/deploy

Minimalistic solutions

• bluepill, vitriol, virtdbg, hyperdbg . . .

• too intrusive, in vivo virtualization

• OS dependent

restart from scratch !

s.duverger :: ramooflax :: sstic 2011 5/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 6/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

A standalone minimalistic hypervisor

Desired specifications

• simple, lightweight, fast and reliable

• small impact on native performances

• based on Intel-VT (vmx) and AMD-V (svm)

• take benefit of existing stuff (BIOS)

• keep simpledesign/mechanisms into complex software pieces (VMM)

• delegate operational complexity to userland layer remotely controlled (client)

Targeting cutting edge CPUs

• depend upon recent hardware virtualization extensions

• especially Intel EPT and AMD RVI
• code simpler and faster
• reduced attack surface

s.duverger :: ramooflax :: sstic 2011 7/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

A standalone minimalistic hypervisor

Desired specifications

• simple, lightweight, fast and reliable

• small impact on native performances

• based on Intel-VT (vmx) and AMD-V (svm)

• take benefit of existing stuff (BIOS)

• keep simpledesign/mechanisms into complex software pieces (VMM)

• delegate operational complexity to userland layer remotely controlled (client)

Targeting cutting edge CPUs

• depend upon recent hardware virtualization extensions

• especially Intel EPT and AMD RVI
• code simpler and faster
• reduced attack surface

s.duverger :: ramooflax :: sstic 2011 7/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 8/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Classical boot sequence

BIOS USB Key (grub)

Loader Setup

VMM

BIOS

HDD boot sector

VM (native OS)

s.duverger :: ramooflax :: sstic 2011 9/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Ramooflax boot sequence

BIOS USB Key (grub)

Loader Setup

VMM

BIOS

HDD boot sector

VM (native OS)

s.duverger :: ramooflax :: sstic 2011 10/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Ramooflax boot sequence

BIOS USB Key (grub)

Loader Setup

VMM

BIOS

HDD boot sector

VM (native OS)

s.duverger :: ramooflax :: sstic 2011 11/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Ramooflax boot sequence

BIOS USB Key (grub)

Loader Setup

VMM

BIOS

HDD boot sector

VM (native OS)

s.duverger :: ramooflax :: sstic 2011 12/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Ramooflax building blocks

BIOS USB Key (grub)

Loader Setup

VMM

BIOS

HDD boot sector

VM (native OS)

Loader

• boots in 32 bits protected mode (multiboot standard)

• enters longmode (64 bits) then load Setup

• relocate vmm to size(RAM) − size(vmm)

• reduce RAM size (craft special VM SMAPs)

• install int 0x19 into conventional memory

• invoke vmm

s.duverger :: ramooflax :: sstic 2011 13/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Ramooflax building blocks

BIOS USB Key (grub)

Loader Setup

VMM

BIOS

HDD boot sector

VM (native OS)

Setup

• initialize virtualization structures, drivers, memory

• retrieve RAM size and compute VMM needed space

• relocate vmm to size(RAM) − size(vmm)

• reduce RAM size (craft special VM SMAPs)

• install int 0x19 into conventional memory

• invoke vmm

s.duverger :: ramooflax :: sstic 2011 14/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Ramooflax building blocks

BIOS USB Key (grub)

Loader Setup

VMM

BIOS

HDD boot sector

VM (native OS)

VMM résidant

• PIE binary (variable RAM size)

• start its dedicated VM in real mode on int 0x19

• tell the BIOS (virtualized) to start native OS

• reduce RAM size (craft special VM SMAPs)

• install int 0x19 into conventional memory

• invoke vmm

s.duverger :: ramooflax :: sstic 2011 15/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 16/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Common points between Intel-VT (vmx) and AMD-V (svm)

Interest

• simplify hypervisor development

• reduced instruction set (∼ 10)

• vm-entry/vm-exit paradigm
• vm-entry load VM and save VMM
• vm-exit load VMM and save VM

Relies upon data structures configuration

• AMD VMCB, Intel VMCS (asynchronous vmread, vmwrite)

• system registers setup (cr, dr, gdtr, idtr, ...)

• events injection (interrupts, exceptions)

• interception bitmaps setup
• events
• sensitive instructions
• I/O, MSRs . . . accesses

s.duverger :: ramooflax :: sstic 2011 17/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 18/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Many limitations

• Compatibility fail between Intel/AMD

• different features among CPU models

• hard to obtain CPU skills before buying it ! http://cpuid.intel.com ?

• lack of information after vm-exit

• need to embed an emulation/disassembly engine

• hardware interrupts interception is on/off . . . no vector granularity

• Intel does not provide software interrupts interception

• AMD keeps hardware interrupts pending

• SMIs headache (CPU bugs, BIOS bugs, SMM virtualization needed, . . .)

Real mode management disaster under Intel
painfull for real-life BIOS virtualization !

s.duverger :: ramooflax :: sstic 2011 19/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Many limitations

• Compatibility fail between Intel/AMD

• different features among CPU models

• hard to obtain CPU skills before buying it ! http://cpuid.intel.com ?

• lack of information after vm-exit

• need to embed an emulation/disassembly engine

• hardware interrupts interception is on/off . . . no vector granularity

• Intel does not provide software interrupts interception

• AMD keeps hardware interrupts pending

• SMIs headache (CPU bugs, BIOS bugs, SMM virtualization needed, . . .)

Real mode management disaster under Intel
painfull for real-life BIOS virtualization !

s.duverger :: ramooflax :: sstic 2011 19/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

BIOS virtualization

BIOS and real mode

• default CPU mode

• 16 bits, 20 bits (1MB) memory addressing, no protection

• massively used by the BIOS

Real mode virtualization the merovingian way

• harware assisted virtualization exists since 80386: v8086 mode

• real mode mechanisms emulation (interrupts, far call, . . .)

• redirect/intercept I/O, interrupts

Real mode virtualization the vmx/svm way

• AMD provides a new paged real mode (CR0.PE=0 && CR0.PG=1)

• Intel forbids CR0.PG=0 and so CR0.PE=0

• recommand the use of v8086 mode
• vm-entry while in v8086 is very restrictive
• especially with regard to segmentation

s.duverger :: ramooflax :: sstic 2011 20/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

BIOS virtualization

BIOS and real mode

• default CPU mode

• 16 bits, 20 bits (1MB) memory addressing, no protection

• massively used by the BIOS

Real mode virtualization the merovingian way

• harware assisted virtualization exists since 80386: v8086 mode

• real mode mechanisms emulation (interrupts, far call, . . .)

• redirect/intercept I/O, interrupts

Real mode virtualization the vmx/svm way

• AMD provides a new paged real mode (CR0.PE=0 && CR0.PG=1)

• Intel forbids CR0.PG=0 and so CR0.PE=0

• recommand the use of v8086 mode
• vm-entry while in v8086 is very restrictive
• especially with regard to segmentation

s.duverger :: ramooflax :: sstic 2011 20/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

BIOS virtualization

BIOS and real mode

• default CPU mode

• 16 bits, 20 bits (1MB) memory addressing, no protection

• massively used by the BIOS

Real mode virtualization the merovingian way

• harware assisted virtualization exists since 80386: v8086 mode

• real mode mechanisms emulation (interrupts, far call, . . .)

• redirect/intercept I/O, interrupts

Real mode virtualization the vmx/svm way

• AMD provides a new paged real mode (CR0.PE=0 && CR0.PG=1)

• Intel forbids CR0.PG=0 and so CR0.PE=0

• recommand the use of v8086 mode
• vm-entry while in v8086 is very restrictive
• especially with regard to segmentation

s.duverger :: ramooflax :: sstic 2011 20/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Segmentation reminder

Segment registers

• visible part (selector)

• hidden part managed by the CPU (base, limit, attributs)

• real mode: base = selector ∗ 16, limit = 64K

• protected mode: segment descriptors

index=2,ti=0,rpl=0

CS.selector = 0x10

Null

GDT

base,limit,attrljmp $0x10, $0x72b6

CS.attr = ...

CS.base = ...

CS.limit = ...

CPU internal

+eip =

s.duverger :: ramooflax :: sstic 2011 21/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

BIOS virtualization

Unreal mode (flat real, big real mode)

• access more than 1MB of memory while in real mode

• protected to real mode transition keeping ie base=0 and limit=4GB

• used by the BIOS to access memory mapped devices, . . .

seg000:F7284 mov bx, 20h

seg000:F7287 cli

seg000:F7288 mov ax, cs

seg000:F728A cmp ax, 0F000h

seg000:F728D jnz short near ptr unk_7297

seg000:F728F lgdt fword ptr cs:byte_8163 (1)

seg000:F7295 jmp short near ptr unk_729D

seg000:F7297 lgdt fword ptr cs:byte_8169

seg000:F729D mov eax, cr0

seg000:F72A0 or al, 1

seg000:F72A2 mov cr0, eax (2)

seg000:F72A5 mov ax, cs

seg000:F72A7 cmp ax, 0F000h

seg000:F72AA jnz short near ptr unk_72B1

seg000:F72AC jmp far ptr 10h:72B6h (3)

seg000:F72B1 jmp far ptr 28h:72B6h

seg000:F72B6 mov ds, bx (4)

seg000:F72B8 mov es, bx

seg000:F72BA mov eax, cr0

seg000:F72BD and al, 0FEh

seg000:F72BF mov cr0, eax (5)

seg000:F72C2 mov ax, cs

seg000:F72C4 cmp ax, 10h (6)

seg000:F72C7 jnz short near ptr unk_72CE

seg000:F72C9 jmp far ptr 0F000h:72D3h

seg000:F72CE jmp far ptr 0E000h:72D3h

s.duverger :: ramooflax :: sstic 2011 22/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

BIOS virtualization

Intel failure

• vm-entry in v8086 mode checks1 base = selector ∗ 16

• can not virtualize unreal mode using v8086

Without recent hardware virtualization extensions

• real mode emulation while in protected mode

• intercept segment registers accesses: far call/jump, mov/pop seg, iret

• double fail: Intel does not provide segment registers interception

• solution: force GDT and IDT limits to 0 and intercept raised #GP

With newer CPUs ...

• Unrestricted Guest mode (allow CR0.PE=0 && CR0.PG=0)

• need Intel EPT to protect over VMM memory

1Intel Volume 3B Section 23.3.1.2

s.duverger :: ramooflax :: sstic 2011 23/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

BIOS virtualization

Intel failure

• vm-entry in v8086 mode checks1 base = selector ∗ 16

• can not virtualize unreal mode using v8086

Without recent hardware virtualization extensions

• real mode emulation while in protected mode

• intercept segment registers accesses: far call/jump, mov/pop seg, iret

• double fail: Intel does not provide segment registers interception

• solution: force GDT and IDT limits to 0 and intercept raised #GP

With newer CPUs ...

• Unrestricted Guest mode (allow CR0.PE=0 && CR0.PG=0)

• need Intel EPT to protect over VMM memory

1Intel Volume 3B Section 23.3.1.2

s.duverger :: ramooflax :: sstic 2011 23/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

BIOS virtualization

Intel failure

• vm-entry in v8086 mode checks1 base = selector ∗ 16

• can not virtualize unreal mode using v8086

Without recent hardware virtualization extensions

• real mode emulation while in protected mode

• intercept segment registers accesses: far call/jump, mov/pop seg, iret

• double fail: Intel does not provide segment registers interception

• solution: force GDT and IDT limits to 0 and intercept raised #GP

With newer CPUs ...

• Unrestricted Guest mode (allow CR0.PE=0 && CR0.PG=0)

• need Intel EPT to protect over VMM memory

1Intel Volume 3B Section 23.3.1.2

s.duverger :: ramooflax :: sstic 2011 23/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 24/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Execution flow

svm vmexit handler()

svm vmexit pre hdl() svm vmexit dispatcher() svm vmexit post hdl()

vm
vm-exit vm-resume

control sub-systemnested #PF

check

access

instructions

cpuid

msr

cr

events

int xx

excpt

i/o

s.duverger :: ramooflax :: sstic 2011 25/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 26/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

System registers filtering

Control Registers

• cr0 for mode transitions, cache consistency and memory mappings

• cr3 for remote control (more on this later)

• as a remote client feature

reading MSR and CPUID

• native execution or backed VMCS/VMCB reading

• postprocessing to hide specific features

writing MSR

• emulate wrmsr if backed to VMCS/VMCB

• else native execution

s.duverger :: ramooflax :: sstic 2011 27/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Events filtering

Exceptions

• fine grain interception of #DB and #BP mainly for control sub-system

• filter #GP under Intel for specific software interrupts interception

Software interrupts

• only in real mode

• filter SMAPs accesses (int 0x15)

Hardware interrupts

• not intercepted

• . . . but you can do it

s.duverger :: ramooflax :: sstic 2011 28/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 29/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Emulation

Instructions

• disassembly/emulation needed to properly handle vm-exit

• Ramooflax embeds udis86 overkill

• emulated instructions are simple

• take care of execution context

Devices

• partial emulation/interception of UART, PIC, KBD and PS2 System Controller

• mainly to control reboot bits

s.duverger :: ramooflax :: sstic 2011 30/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 31/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

VMM, VM, client interaction

hidden devices emulated devices visible devices

VMM (Ramooflax)

VM (native OS)

client

Remote

s.duverger :: ramooflax :: sstic 2011 32/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Remote communication

UART

• slow, unreliable

• only used for debug purpose

EHCI Debug Port

• USB 2.0 specification tells that a physical USB port can be used as a Debug Port

• found in most of EHCI host controllers

• reliable, standardized and fast

• as simple as an UART to drive

Ramooflax side implementation

• Debug Port driver

• EHCI host controller remains under VM control

s.duverger :: ramooflax :: sstic 2011 33/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Remote communication

EHCI Debug Port: client side

• USB specification: no direct data transfers between host controllers

• Debug Device needed
• buy a specific device (ie Net20DC)
• take benefit of USB On-The-Go controllers (smartphones . . .)

Debug Device emulation under Linux

• Gadget API allows USB devices emulation (mass storage . . .)

• we have developed a Debug Device gadget exposing a serial interface (ttyGS0)

development board

socat /dev/ttyGS0 TCP-LISTEN:1234

ehci OTG ethernet

ehci host

debug port

vmm

python

framework

client

s.duverger :: ramooflax :: sstic 2011 34/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Remote communication

EHCI Debug Port: client side

• USB specification: no direct data transfers between host controllers

• Debug Device needed
• buy a specific device (ie Net20DC)
• take benefit of USB On-The-Go controllers (smartphones . . .)

Debug Device emulation under Linux

• Gadget API allows USB devices emulation (mass storage . . .)

• we have developed a Debug Device gadget exposing a serial interface (ttyGS0)

development board

socat /dev/ttyGS0 TCP-LISTEN:1234

ehci OTG ethernet

ehci host

debug port

vmm

python

framework

client

s.duverger :: ramooflax :: sstic 2011 34/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 35/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Client interaction

Taking control

• VMM waits for vm-exit

• find the good trade off between client reactivity and VM performances

• ensure that VMM can get control over VM on client demand

• recently Intel introduced a vmx preemption timer, but not AMD

Via hardware interrupts ?

• no irq raised for Debug Port

• complexity, latency, . . .

Context switch

• modern OS schedules processes

• intercept writes to cr3

s.duverger :: ramooflax :: sstic 2011 36/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Client interaction

GDB stub implementation

• read/write general purpose registers

• read/write memory

• add/remove software and hardware breakpoints

• single-stepping

Protocol limits

• designed for userspace applications debugging

• no ring 0 information (segmentation, paging, . . .)

• no virtual/physical memory distinction

s.duverger :: ramooflax :: sstic 2011 37/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Client interaction

Ramooflax specific extensions

• system registers access
• cr0, cr2, cr3, cr4
• dr0-dr3, dr6, dr7, dbgctl
• cs, ss, ds, es, fs, gs base address
• gdtr, idtr, ldtr and tr

• memory access
• now virtual/physical distinction
• translation mechanism
• fixed cr3 feature (force VMM to work with a specific cr3)

• virtualization control
• control registers intercept
• exceptions intercept
• ideally . . . full control over VMCS/VMCB

s.duverger :: ramooflax :: sstic 2011 38/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Client interaction

Ramooflax specific extensions

• system registers access
• cr0, cr2, cr3, cr4
• dr0-dr3, dr6, dr7, dbgctl
• cs, ss, ds, es, fs, gs base address
• gdtr, idtr, ldtr and tr

• memory access
• now virtual/physical distinction
• translation mechanism
• fixed cr3 feature (force VMM to work with a specific cr3)

• virtualization control
• control registers intercept
• exceptions intercept
• ideally . . . full control over VMCS/VMCB

s.duverger :: ramooflax :: sstic 2011 38/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Client interaction

Ramooflax specific extensions

• system registers access
• cr0, cr2, cr3, cr4
• dr0-dr3, dr6, dr7, dbgctl
• cs, ss, ds, es, fs, gs base address
• gdtr, idtr, ldtr and tr

• memory access
• now virtual/physical distinction
• translation mechanism
• fixed cr3 feature (force VMM to work with a specific cr3)

• virtualization control
• control registers intercept
• exceptions intercept
• ideally . . . full control over VMCS/VMCB

s.duverger :: ramooflax :: sstic 2011 38/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Client interaction

Single-step management

• based on TF and exceptions intercepts

• many distinct modes under a VM
• global (implemented)
• kernel thread only
• ring 3 process only (implemented)
• ring 0/3 process only (follow system calls, . . .)

• no features related to the virtualized OS concepts (process termination)

• stealth/consistency (pushf,popf,intN,iret intercept)

Special case: sysenter/sysexit

• uninterceptable under AMD and Intel (!!!)

• do not mask TF when entering ring 0

• need to implement a fault based mechanism (as Intel software interrupts)

s.duverger :: ramooflax :: sstic 2011 39/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Client interaction

Single-step management

• based on TF and exceptions intercepts

• many distinct modes under a VM
• global (implemented)
• kernel thread only
• ring 3 process only (implemented)
• ring 0/3 process only (follow system calls, . . .)

• no features related to the virtualized OS concepts (process termination)

• stealth/consistency (pushf,popf,intN,iret intercept)

Special case: sysenter/sysexit

• uninterceptable under AMD and Intel (!!!)

• do not mask TF when entering ring 0

• need to implement a fault based mechanism (as Intel software interrupts)

s.duverger :: ramooflax :: sstic 2011 39/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 40/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

A python interface to the hypervisor

Framework components

• VM, high-level features

• CPU, registers, exception filtering . . .

• Breakpoints, soft/hard

• GDB, a GDB client with Ramooflax extensions

• Memory, control memory accesses

• Event, vm-exit hooking mechanism to implement your own python handlers

s.duverger :: ramooflax :: sstic 2011 41/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Framework components: VM

• run, stop, resume, singlestep, attach, detach

vm = VM(CPUFamily.AMD, 32, "192.168.254.254:1234")

• interactive mode

vm.run(dict(globals(), **locals()))

• script mode

vm.attach() # remote connection

vm.stop() # stop it

xxxx (breakpoints, filters, ...)

vm.resume() # resume and wait for next vm-exit

vm.detach() # disconnect, vm resumed

s.duverger :: ramooflax :: sstic 2011 42/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Framework components: CPU, Memory and Breakpoints

• breakpoints naming

data write breakpoint

vm.cpu.breakpoints.add_data_w(vm.cpu.sr.tr+4, 4, filter, "esp0")

>>> vm.cpu.breakpoints

esp0 0xc1331f14 Write (4)

kernel_f1 0xc0001234 eXecute (1)

• cr3 tracking feature

reading a virtual memory page

vm.cpu.set_active_cr3(my_cr3)

pg = vm.mem.vread(0x8048000, 4096)

s.duverger :: ramooflax :: sstic 2011 43/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Framework components: Event

• GDB conditional breakpoints syntax is . . . hmm

• allow the developer to execute a function after a vm-exit

• split architecture/OS specific mechanisms

• filter an exception, a write to cr3, a breakpoint, . . .

def handle_excp(vm):

if vm.cpu.gpr.eip == 0x1234:

return True

return False

vm.cpu.filter_exception(CPUException.general_protection, handle_excp)

while not vm.resume():

continue

vm.interact()

s.duverger :: ramooflax :: sstic 2011 44/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Introduction

Concept
Specifications
Architecture

Hardware virtualization
Overview
Limitations

Ramooflax internals
Execution flow
Filtering
Emulation
Communication
Interaction

Remote client

Conclusion

s.duverger :: ramooflax :: sstic 2011 45/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Conclusion

Support

• AMD ready

• successfully tested under
• Windows XP/7 Pro 32 bits
• Debian GNU/Linux 5.0 32 bits

• simpler OS should run (DOS, OpenBSD, . . .)

Limitations

• Intel needs to be rewritten

• no SMP, multi-cores
• tricky to setup

• initialize all Cores and enable virtualization
• intercept Cores initialization done by the VM

• circumvent via /numproc, maxcpus

• 64 bits VM working . . . almost
• not really tested
• ioAPIC and SMP characterologicals

• no Nested Virtualization

s.duverger :: ramooflax :: sstic 2011 46/47

Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Conclusion

Support

• AMD ready

• successfully tested under
• Windows XP/7 Pro 32 bits
• Debian GNU/Linux 5.0 32 bits

• simpler OS should run (DOS, OpenBSD, . . .)

Limitations

• Intel needs to be rewritten

• no SMP, multi-cores
• tricky to setup

• initialize all Cores and enable virtualization
• intercept Cores initialization done by the VM

• circumvent via /numproc, maxcpus

• 64 bits VM working . . . almost
• not really tested
• ioAPIC and SMP characterologicals

• no Nested Virtualization

s.duverger :: ramooflax :: sstic 2011 46/47

Thank you !

https://github.com/sduverger/ramooflax

	Introduction
	Concept
	Specifications
	Architecture

	Hardware virtualization
	Overview
	Limitations

	Ramooflax internals
	Execution flow
	Filtering
	Emulation
	Communication
	Interaction

	Remote client
	Conclusion

