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We wanted a tool . . .

• to have control over complex systems (bios, kernel, . . . )

• running on a physical machine (x86 32 et 64 bits)

• without any software dependencies

The idea

• a hypervisor with a dedicated VM

• remotely controlled

• type 1 (bare metal)
• simple isolation
• control visible hardware
• software indepedenza !
• require startup before the VM
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Overview of available hypervisors

Common solutions

• VirtualBox, KVM: misfit, type 2 (hosted)

• Xen: too complex to adapt/deploy

Minimalistic solutions

• bluepill, vitriol, virtdbg, hyperdbg . . .

• too intrusive, in vivo virtualization

• OS dependent

restart from scratch !
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A standalone minimalistic hypervisor

Desired specifications

• simple, lightweight, fast and reliable

• small impact on native performances

• based on Intel-VT (vmx) and AMD-V (svm)

• take benefit of existing stuff (BIOS)

• keep simpledesign/mechanisms into complex software pieces (VMM)

• delegate operational complexity to userland layer remotely controlled (client)

Targeting cutting edge CPUs

• depend upon recent hardware virtualization extensions

• especially Intel EPT and AMD RVI
• code simpler and faster
• reduced attack surface
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Classical boot sequence

BIOS USB Key (grub)

Loader Setup

VMM

BIOS

HDD boot sector

VM (native OS)
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Ramooflax building blocks

BIOS USB Key (grub)

Loader Setup

VMM

BIOS

HDD boot sector

VM (native OS)

Loader

• boots in 32 bits protected mode (multiboot standard)

• enters longmode (64 bits) then load Setup

• relocate vmm to size(RAM) − size(vmm)

• reduce RAM size (craft special VM SMAPs)

• install int 0x19 into conventional memory

• invoke vmm
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Ramooflax building blocks

BIOS USB Key (grub)

Loader Setup

VMM

BIOS

HDD boot sector

VM (native OS)

Setup

• initialize virtualization structures, drivers, memory

• retrieve RAM size and compute VMM needed space

• relocate vmm to size(RAM) − size(vmm)

• reduce RAM size (craft special VM SMAPs)

• install int 0x19 into conventional memory

• invoke vmm
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Ramooflax building blocks

BIOS USB Key (grub)

Loader Setup

VMM

BIOS

HDD boot sector

VM (native OS)

VMM résidant

• PIE binary (variable RAM size)

• start its dedicated VM in real mode on int 0x19

• tell the BIOS (virtualized) to start native OS

• reduce RAM size (craft special VM SMAPs)

• install int 0x19 into conventional memory

• invoke vmm
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Common points between Intel-VT (vmx) and AMD-V (svm)

Interest

• simplify hypervisor development

• reduced instruction set (∼ 10)

• vm-entry/vm-exit paradigm
• vm-entry load VM and save VMM
• vm-exit load VMM and save VM

Relies upon data structures configuration

• AMD VMCB, Intel VMCS (asynchronous vmread, vmwrite)

• system registers setup (cr, dr, gdtr, idtr, ...)

• events injection (interrupts, exceptions)

• interception bitmaps setup
• events
• sensitive instructions
• I/O, MSRs . . . accesses
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Many limitations

• Compatibility fail between Intel/AMD

• different features among CPU models

• hard to obtain CPU skills before buying it ! http://cpuid.intel.com ?

• lack of information after vm-exit

• need to embed an emulation/disassembly engine

• hardware interrupts interception is on/off . . . no vector granularity

• Intel does not provide software interrupts interception

• AMD keeps hardware interrupts pending

• SMIs headache (CPU bugs, BIOS bugs, SMM virtualization needed, . . . )

Real mode management disaster under Intel
painfull for real-life BIOS virtualization !
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BIOS virtualization

BIOS and real mode

• default CPU mode

• 16 bits, 20 bits (1MB) memory addressing, no protection

• massively used by the BIOS

Real mode virtualization the merovingian way

• harware assisted virtualization exists since 80386: v8086 mode

• real mode mechanisms emulation (interrupts, far call, . . . )

• redirect/intercept I/O, interrupts

Real mode virtualization the vmx/svm way

• AMD provides a new paged real mode (CR0.PE=0 && CR0.PG=1)

• Intel forbids CR0.PG=0 and so CR0.PE=0

• recommand the use of v8086 mode
• vm-entry while in v8086 is very restrictive
• especially with regard to segmentation
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Segmentation reminder

Segment registers

• visible part (selector)

• hidden part managed by the CPU (base, limit, attributs)

• real mode: base = selector ∗ 16, limit = 64K

• protected mode: segment descriptors

index=2,ti=0,rpl=0

CS.selector = 0x10

Null

GDT

base,limit,attrljmp $0x10, $0x72b6

CS.attr = ...

CS.base = ...

CS.limit = ...

CPU internal

+eip =
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BIOS virtualization

Unreal mode (flat real, big real mode)

• access more than 1MB of memory while in real mode

• protected to real mode transition keeping ie base=0 and limit=4GB

• used by the BIOS to access memory mapped devices, . . .

seg000:F7284 mov bx, 20h

seg000:F7287 cli

seg000:F7288 mov ax, cs

seg000:F728A cmp ax, 0F000h

seg000:F728D jnz short near ptr unk_7297

seg000:F728F lgdt fword ptr cs:byte_8163 (1)

seg000:F7295 jmp short near ptr unk_729D

seg000:F7297 lgdt fword ptr cs:byte_8169

seg000:F729D mov eax, cr0

seg000:F72A0 or al, 1

seg000:F72A2 mov cr0, eax (2)

seg000:F72A5 mov ax, cs

seg000:F72A7 cmp ax, 0F000h

seg000:F72AA jnz short near ptr unk_72B1

seg000:F72AC jmp far ptr 10h:72B6h (3)

seg000:F72B1 jmp far ptr 28h:72B6h

seg000:F72B6 mov ds, bx (4)

seg000:F72B8 mov es, bx

seg000:F72BA mov eax, cr0

seg000:F72BD and al, 0FEh

seg000:F72BF mov cr0, eax (5)

seg000:F72C2 mov ax, cs

seg000:F72C4 cmp ax, 10h (6)

seg000:F72C7 jnz short near ptr unk_72CE

seg000:F72C9 jmp far ptr 0F000h:72D3h

seg000:F72CE jmp far ptr 0E000h:72D3h
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BIOS virtualization

Intel failure

• vm-entry in v8086 mode checks1 base = selector ∗ 16

• can not virtualize unreal mode using v8086

Without recent hardware virtualization extensions

• real mode emulation while in protected mode

• intercept segment registers accesses: far call/jump, mov/pop seg, iret

• double fail: Intel does not provide segment registers interception

• solution: force GDT and IDT limits to 0 and intercept raised #GP

With newer CPUs ...

• Unrestricted Guest mode (allow CR0.PE=0 && CR0.PG=0)

• need Intel EPT to protect over VMM memory

1Intel Volume 3B Section 23.3.1.2
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Execution flow

svm vmexit handler()

svm vmexit pre hdl() svm vmexit dispatcher() svm vmexit post hdl()

vm
vm-exit vm-resume

control sub-systemnested #PF

check

access

instructions

cpuid

msr

cr

events

int xx

excpt

i/o
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System registers filtering

Control Registers

• cr0 for mode transitions, cache consistency and memory mappings

• cr3 for remote control (more on this later)

• as a remote client feature

reading MSR and CPUID

• native execution or backed VMCS/VMCB reading

• postprocessing to hide specific features

writing MSR

• emulate wrmsr if backed to VMCS/VMCB

• else native execution
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Events filtering

Exceptions

• fine grain interception of #DB and #BP mainly for control sub-system

• filter #GP under Intel for specific software interrupts interception

Software interrupts

• only in real mode

• filter SMAPs accesses (int 0x15)

Hardware interrupts

• not intercepted

• . . . but you can do it
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Emulation

Instructions

• disassembly/emulation needed to properly handle vm-exit

• Ramooflax embeds udis86 .... overkill

• emulated instructions are simple

• take care of execution context

Devices

• partial emulation/interception of UART, PIC, KBD and PS2 System Controller

• mainly to control reboot bits
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VMM, VM, client interaction

hidden devices emulated devices visible devices

VMM (Ramooflax)

VM (native OS)

client

Remote
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Remote communication

UART

• slow, unreliable

• only used for debug purpose

EHCI Debug Port

• USB 2.0 specification tells that a physical USB port can be used as a Debug Port

• found in most of EHCI host controllers

• reliable, standardized and fast

• as simple as an UART to drive

Ramooflax side implementation

• Debug Port driver

• EHCI host controller remains under VM control
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Remote communication

EHCI Debug Port: client side

• USB specification: no direct data transfers between host controllers

• Debug Device needed
• buy a specific device (ie Net20DC)
• take benefit of USB On-The-Go controllers (smartphones . . . )

Debug Device emulation under Linux

• Gadget API allows USB devices emulation (mass storage . . . )

• we have developed a Debug Device gadget exposing a serial interface (ttyGS0)

development board

socat /dev/ttyGS0 TCP-LISTEN:1234

ehci OTG ethernet

ehci host

debug port

vmm

python

framework

client
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Client interaction

Taking control

• VMM waits for vm-exit

• find the good trade off between client reactivity and VM performances

• ensure that VMM can get control over VM on client demand

• recently Intel introduced a vmx preemption timer, but not AMD

Via hardware interrupts ?

• no irq raised for Debug Port

• complexity, latency, . . .

Context switch

• modern OS schedules processes

• intercept writes to cr3

s.duverger :: ramooflax :: sstic 2011 36/47



Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Client interaction

GDB stub implementation

• read/write general purpose registers

• read/write memory

• add/remove software and hardware breakpoints

• single-stepping

Protocol limits

• designed for userspace applications debugging

• no ring 0 information (segmentation, paging, . . . )

• no virtual/physical memory distinction
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Client interaction

Ramooflax specific extensions

• system registers access
• cr0, cr2, cr3, cr4
• dr0-dr3, dr6, dr7, dbgctl
• cs, ss, ds, es, fs, gs base address
• gdtr, idtr, ldtr and tr

• memory access
• now virtual/physical distinction
• translation mechanism
• fixed cr3 feature (force VMM to work with a specific cr3)

• virtualization control
• control registers intercept
• exceptions intercept
• ideally . . . full control over VMCS/VMCB
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Client interaction

Single-step management

• based on TF and exceptions intercepts

• many distinct modes under a VM
• global (implemented)
• kernel thread only
• ring 3 process only (implemented)
• ring 0/3 process only (follow system calls, . . . )

• no features related to the virtualized OS concepts (process termination)

• stealth/consistency (pushf,popf,intN,iret intercept)

Special case: sysenter/sysexit

• uninterceptable under AMD and Intel (!!!)

• do not mask TF when entering ring 0

• need to implement a fault based mechanism (as Intel software interrupts)
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A python interface to the hypervisor

Framework components

• VM, high-level features

• CPU, registers, exception filtering . . .

• Breakpoints, soft/hard

• GDB, a GDB client with Ramooflax extensions

• Memory, control memory accesses

• Event, vm-exit hooking mechanism to implement your own python handlers

s.duverger :: ramooflax :: sstic 2011 41/47



Introduction Concept Hardware virtualization Ramooflax internals Remote client Conclusion

Framework components: VM

• run, stop, resume, singlestep, attach, detach

vm = VM(CPUFamily.AMD, 32, "192.168.254.254:1234")

• interactive mode

vm.run(dict(globals(), **locals()))

• script mode

vm.attach() # remote connection

vm.stop() # stop it

# xxxx (breakpoints, filters, ...)

vm.resume() # resume and wait for next vm-exit

vm.detach() # disconnect, vm resumed
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Framework components: CPU, Memory and Breakpoints

• breakpoints naming

# data write breakpoint

vm.cpu.breakpoints.add_data_w(vm.cpu.sr.tr+4, 4, filter, "esp0")

>>> vm.cpu.breakpoints

esp0 0xc1331f14 Write (4)

kernel_f1 0xc0001234 eXecute (1)

• cr3 tracking feature

# reading a virtual memory page

vm.cpu.set_active_cr3(my_cr3)

pg = vm.mem.vread(0x8048000, 4096)
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Framework components: Event

• GDB conditional breakpoints syntax is . . . hmm

• allow the developer to execute a function after a vm-exit

• split architecture/OS specific mechanisms

• filter an exception, a write to cr3, a breakpoint, . . .

def handle_excp(vm):

if vm.cpu.gpr.eip == 0x1234:

return True

return False

vm.cpu.filter_exception(CPUException.general_protection, handle_excp)

while not vm.resume():

continue

vm.interact()
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Conclusion

Support

• AMD ready

• successfully tested under
• Windows XP/7 Pro 32 bits
• Debian GNU/Linux 5.0 32 bits

• simpler OS should run (DOS, OpenBSD, . . . )

Limitations

• Intel needs to be rewritten

• no SMP, multi-cores
• tricky to setup

• initialize all Cores and enable virtualization
• intercept Cores initialization done by the VM

• circumvent via /numproc, maxcpus

• 64 bits VM working . . . almost
• not really tested
• ioAPIC and SMP characterologicals

• no Nested Virtualization
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Thank you !

https://github.com/sduverger/ramooflax
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