-
Notifications
You must be signed in to change notification settings - Fork 1
/
arguments.py
executable file
·613 lines (553 loc) · 35 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""argparser configuration"""
import argparse
import os
import torch
import deepspeed
import json
from utils import get_hostname
import random
import socket
from datetime import datetime
def add_model_config_args(parser):
"""Model arguments"""
group = parser.add_argument_group('model', 'model configuration')
group.add_argument('--transformer-xl', action='store_true', help='use transformer-xl for training')
group.add_argument('--pretrained-bert', action='store_true',
help='use a pretrained bert-large-uncased model instead'
'of initializing from scratch. See '
'--tokenizer-model-type to specify which pretrained '
'BERT model to use')
group.add_argument('--encoder-decoder', action='store_true',
help="use the encoder-decoder architecture for blocklm")
group.add_argument('--attention-dropout', type=float, default=0.1,
help='dropout probability for attention weights')
group.add_argument('--num-attention-heads', type=int, default=16,
help='num of transformer attention heads')
group.add_argument('--hidden-size', type=int, default=1024,
help='tansformer hidden size')
group.add_argument('--intermediate-size', type=int, default=None,
help='transformer embedding dimension for FFN'
'set to 4*`--hidden-size` if it is None')
group.add_argument('--num-layers', type=int, default=24,
help='num decoder layers')
group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
help='layer norm epsilon')
group.add_argument('--hidden-dropout', type=float, default=0.1,
help='dropout probability for hidden state transformer')
group.add_argument('--output-dropout', type=float, default=0.1,
help='dropout probability for pooled output')
group.add_argument('--max-position-embeddings', type=int, default=512,
help='maximum number of position embeddings to use')
group.add_argument('--vocab-size', type=int, default=30522,
help='vocab size to use for non-character-level '
'tokenization. This value will only be used when '
'creating a tokenizer')
group.add_argument('--deep-init', action='store_true',
help='initialize bert model similar to gpt2 model.'
'scales initialization of projection layers by a '
'factor of 1/sqrt(2N). Necessary to train bert '
'models larger than BERT-Large.')
group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
help='Pad the vocab size to be divisible by this value.'
'This is added for computational efficieny reasons.')
group.add_argument('--cpu-optimizer', action='store_true',
help='Run optimizer on CPU')
group.add_argument('--cpu_torch_adam', action='store_true',
help='Use Torch Adam as optimizer on CPU.')
return parser
def add_fp16_config_args(parser):
"""Mixed precision arguments."""
group = parser.add_argument_group('fp16', 'fp16 configurations')
group.add_argument('--fp16', action='store_true',
help='Run model in fp16 mode')
group.add_argument('--fp32-embedding', action='store_true',
help='embedding in fp32')
group.add_argument('--fp32-layernorm', action='store_true',
help='layer norm in fp32')
group.add_argument('--fp32-tokentypes', action='store_true',
help='embedding token types in fp32')
group.add_argument('--fp32-allreduce', action='store_true',
help='all-reduce in fp32')
group.add_argument('--hysteresis', type=int, default=2,
help='hysteresis for dynamic loss scaling')
group.add_argument('--loss-scale', type=float, default=None,
help='Static loss scaling, positive power of 2 '
'values can improve fp16 convergence. If None, dynamic'
'loss scaling is used.')
group.add_argument('--loss-scale-window', type=float, default=1000,
help='Window over which to raise/lower dynamic scale')
group.add_argument('--min-scale', type=float, default=1,
help='Minimum loss scale for dynamic loss scale')
group.add_argument('--attention-scale', type=float, default=1.0)
return parser
def add_training_args(parser):
"""Training arguments."""
group = parser.add_argument_group('train', 'training configurations')
group.add_argument('--experiment-name', type=str, default="gpt-345M",
help="The experiment name for summary and checkpoint")
group.add_argument('--batch-size', type=int, default=4,
help='Data Loader batch size')
group.add_argument('--gradient-accumulation-steps', type=int, default=1,
help='Data Loader batch size')
group.add_argument('--weight-decay', type=float, default=0.01,
help='weight decay coefficient for L2 regularization')
group.add_argument('--checkpoint-activations', action='store_true',
help='checkpoint activation to allow for training '
'with larger models and sequences')
group.add_argument('--checkpoint-num-layers', type=int, default=1,
help='chunk size (number of layers) for checkpointing')
group.add_argument('--deepspeed-activation-checkpointing', action='store_true',
help='uses activation checkpointing from deepspeed')
group.add_argument('--epochs', type=int, default=None,
help='Number of finetunning epochs. Zero results in evaluation only.')
group.add_argument('--clip-grad', type=float, default=1.0,
help='gradient clipping')
group.add_argument('--train-iters', type=int, default=0,
help='total number of iterations to train over all training runs')
group.add_argument('--label-smoothing', type=float, default=0.0)
group.add_argument('--log-interval', type=int, default=100,
help='report interval')
group.add_argument('--summary-dir', type=str, default="", help="The directory to store the summary")
group.add_argument('--seed', type=int, default=1234, help='random seed')
# Batch producer arguments
group.add_argument('--reset-position-ids', action='store_true',
help='Reset posistion ids after end-of-document token.')
group.add_argument('--reset-attention-mask', action='store_true',
help='Reset self attention maske after '
'end-of-document token.')
# Learning rate.
group.add_argument('--lr-decay-iters', type=int, default=None,
help='number of iterations to decay LR over,'
' If None defaults to `--train-iters`*`--epochs`')
group.add_argument('--lr-decay-style', type=str, default='linear',
choices=['constant', 'linear', 'cosine', 'exponential'],
help='learning rate decay function')
group.add_argument('--lr-decay-ratio', type=float, default=0.1)
group.add_argument('--lr', type=float, default=1.0e-4,
help='initial learning rate')
group.add_argument('--warmup', type=float, default=0.01,
help='percentage of data to warmup on (.01 = 1% of all '
'training iters). Default 0.01')
group.add_argument('--switch-linear', action='store_true', help="Switch to linear decay for cosine decay")
# model checkpointing
group.add_argument('--save', type=str, default=None,
help='Output directory to save checkpoints to.')
group.add_argument('--new-save-directory', action='store_true')
group.add_argument('--save-epoch', type=int, default=1,
help='number of epochs between saves')
group.add_argument('--save-interval', type=int, default=5000,
help='number of iterations between saves')
group.add_argument('--no-save-optim', action='store_true',
help='Do not save current optimizer.')
group.add_argument('--no-save-rng', action='store_true',
help='Do not save current rng state.')
group.add_argument('--load', type=str, default=None,
help='Path to a directory containing a model checkpoint.')
group.add_argument('--no-load-optim', action='store_true',
help='Do not load optimizer when loading checkpoint.')
group.add_argument('--no-load-rng', action='store_true',
help='Do not load rng state when loading checkpoint.')
group.add_argument('--no-load-lr-scheduler', action='store_true',
help='Do not load lr scheduler when loading checkpoint.')
group.add_argument('--no-deepspeed-load', action='store_true', help='Not use deepspeed when loading checkpoint')
group.add_argument('--finetune', action='store_true',
help='Load model for finetuning. Do not load optimizer '
'or rng state from checkpoint and set iteration to 0. '
'Assumed when loading a release checkpoint.')
group.add_argument('--resume-dataloader', action='store_true',
help='Resume the dataloader when resuming training. '
'Does not apply to tfrecords dataloader, try resuming'
'with a different seed in this case.')
# distributed training args
group.add_argument('--distributed-backend', default='nccl',
help='which backend to use for distributed training. One of [gloo, nccl]',
choices=['nccl', 'gloo'])
group.add_argument('--DDP-impl', default='torch', choices=['local', 'torch', 'none'],
help='which DistributedDataParallel implementation to use.')
group.add_argument('--local_rank', type=int, default=None,
help='local rank passed from distributed launcher')
# BlockLM training args
group.add_argument('--block-lm', action='store_true', help="whether use the BlockLM pre-training")
group.add_argument('--masked-lm', action='store_true', help='whether to use the mlm objective')
group.add_argument('--bert-prob', type=float, default=0.5)
group.add_argument('--gpt-infill-prob', type=float, default=0.5)
group.add_argument('--gpt-min-ratio', type=float, default=0.5)
group.add_argument('--gap-sentence-prob', type=float, default=0.0)
group.add_argument('--gap-sentence-ratio', type=float, default=0.15)
group.add_argument('--avg-block-length', type=int, default=3)
group.add_argument('--short-seq-prob', type=float, default=0.0)
group.add_argument('--single-span-prob', type=float, default=0.0)
group.add_argument('--task-mask', action='store_true', help="Use different mask for generation and blank filling")
group.add_argument('--no-shuffle-block', action='store_true', help="not shuffle the blocks when filling the blank")
group.add_argument('--no-block-position', action='store_true',
help='Use (rough) absolute positions instead of block positions')
group.add_argument('--sentinel-token', action='store_true',
help="Use sentinel (mask) tokens to replace 2d position encoding")
group.add_argument('--block-mask-prob', type=float, default=0.0)
group.add_argument('--context-mask-ratio', type=float, default=0.0)
group.add_argument('--random-position', action='store_true',
help="Use random start position to cover all the position embeddings")
return parser
def add_evaluation_args(parser):
"""Evaluation arguments."""
group = parser.add_argument_group('validation', 'validation configurations')
group.add_argument('--eval-batch-size', type=int, default=None,
help='Data Loader batch size for evaluation datasets.'
'Defaults to `--batch-size`')
group.add_argument('--eval-iters', type=int, default=100,
help='number of iterations to run for evaluation'
'validation/test for')
group.add_argument('--eval-interval', type=int, default=1000,
help='interval between running evaluation on validation set')
group.add_argument('--eval-epoch', type=int, default=1,
help='epoch between running evaluation on validation set')
group.add_argument('--eval-seq-length', type=int, default=None,
help='Maximum sequence length to process for '
'evaluation. Defaults to `--seq-length`')
group.add_argument('--eval-max-preds-per-seq', type=int, default=None,
help='Maximum number of predictions to use for '
'evaluation. Defaults to '
'math.ceil(`--eval-seq-length`*.15/10)*10')
group.add_argument('--overlapping-eval', type=int, default=32)
return parser
def add_text_generate_args(parser):
"""Text generate arguments."""
group = parser.add_argument_group('Text generation', 'configurations')
group.add_argument("--temperature", type=float, default=1.0)
group.add_argument("--top_p", type=float, default=0.0)
group.add_argument("--top_k", type=int, default=0)
group.add_argument("--out-seq-length", type=int, default=256)
group.add_argument("--num-beams", type=int, default=1)
group.add_argument("--length-penalty", type=float, default=0.0)
group.add_argument("--no-repeat-ngram-size", type=int, default=0)
group.add_argument("--min-tgt-length", type=int, default=0)
group.add_argument("--select-topk", action='store_true')
group.add_argument("--blank-maskratio", type=float, default=0.1)
return parser
def add_data_args(parser):
"""Train/valid/test data arguments."""
group = parser.add_argument_group('data', 'data configurations')
group.add_argument('--model-parallel-size', type=int, default=1,
help='size of the model parallel.')
group.add_argument('--shuffle', action='store_true',
help='Shuffle data. Shuffling is deterministic '
'based on seed and current epoch.')
group.add_argument('--filter-english', action='store_true')
group.add_argument('--train-data', nargs='+', default=None,
help='Whitespace separated filenames or corpora names '
'for training.')
group.add_argument('--valid-data', nargs='*', default=None,
help="""Filename for validation data.""")
group.add_argument('--test-data', nargs='*', default=None,
help="""Filename for testing""")
group.add_argument('--data-dir', type=str, default=None, help="The data path to all the data files")
group.add_argument('--input-data-sizes-file', type=str, default='sizes.txt',
help='the filename containing all the shards sizes')
group.add_argument('--delim', default=',',
help='delimiter used to parse csv data files')
group.add_argument('--text-key', default='sentence',
help='key to use to extract text from json/csv')
group.add_argument('--eval-text-key', default=None,
help='key to use to extract text from '
'json/csv evaluation datasets')
group.add_argument('--split', default='1000,1,1',
help='comma-separated list of proportions for training,'
' validation, and test split')
group.add_argument('--no-lazy-loader', action='store_true',
help='whether to lazy read the data set')
group.add_argument('--half-lazy-loader', action='store_true')
group.add_argument('--loader-scatter', type=int, default=None, help='Number of scatters to use for dataloaders')
group.add_argument('--loose-json', action='store_true',
help='Use loose json (one json-formatted string per '
'newline), instead of tight json (data file is one '
'json string)')
group.add_argument('--presplit-sentences', action='store_true',
help='Dataset content consists of documents where '
'each document consists of newline separated sentences')
group.add_argument('--num-workers', type=int, default=2,
help="""Number of workers to use for dataloading""")
group.add_argument('--tokenizer-model-type', type=str,
default=None,
help="Model type to use for sentencepiece tokenization \
(one of ['bpe', 'char', 'unigram', 'word']) or \
bert vocab to use for BertWordPieceTokenizer (one of \
['bert-large-uncased', 'bert-large-cased', etc.])")
group.add_argument('--tokenizer-path', type=str, default='tokenizer.model',
help='path used to save/load sentencepiece tokenization '
'models')
group.add_argument('--tokenizer-type', type=str,
default='BertWordPieceTokenizer',
choices=['CharacterLevelTokenizer',
'SentencePieceTokenizer',
'BertWordPieceTokenizer',
'GPT2BPETokenizer',
'ChineseSPTokenizer'],
help='what type of tokenizer to use')
group.add_argument('--fix-command-token', action='store_true')
group.add_argument('--no-pre-tokenize', action='store_true')
group.add_argument("--cache-dir", default=None, type=str,
help="Where to store pre-trained BERT downloads")
group.add_argument('--use-tfrecords', action='store_true',
help='load `--train-data`, `--valid-data`, '
'`--test-data` from BERT tf records instead of '
'normal data pipeline')
group.add_argument('--seq-length', type=int, default=512,
help="Maximum sequence length to process")
group.add_argument('--mem-length', type=int, default=0,
help="The memory length to preserve")
group.add_argument('--max-preds-per-seq', type=int, default=None,
help='Maximum number of predictions to use per sequence.'
'Defaults to math.ceil(`--seq-length`*.15/10)*10.'
'MUST BE SPECIFIED IF `--use-tfrecords` is True.')
group.add_argument('--non-sentence-start', type=float, default=0.0)
group.add_argument('--sample-one-document', action='store_true', help='only sample one document in one sample')
group.add_argument('--load-splits', type=str, default=None, help="The path to load split indices from")
group.add_argument('--save-splits', type=str, default=None, help="The path to save split indices to")
group.add_argument('--save-test-data', type=str, default=None, help="The path to save the test data")
group.add_argument('--multi-task-data', nargs='*', default=None,
help="Downsteam task names for multi-task pre-training")
group.add_argument('--multi-task-ratio', type=float, default=0.0, help="Ratio for multi-task pre-training")
group.add_argument('--multi-seq-length', type=int, default=None)
group.add_argument('--multi-batch-size', type=int, default=None)
return parser
def add_finetune_config_args(parser):
group = parser.add_argument_group('finetune', 'finetune configurations')
group.add_argument('--task', type=str, help='Task name.')
group.add_argument('--load-pretrained', type=str, help="Load pretrained model", default=None)
group.add_argument('--pool-token', type=str, choices=['start', 'pad', 'cls'],
help='The token to pool the sequence representation', default='cls')
group.add_argument('--cloze-eval', action='store_true', help='Evaluation dataset with cloze task')
group.add_argument('--multi-token', action='store_true', help='Use multi token for cloze evaluation')
group.add_argument('--segment-length', type=int, default=0, help="The maximum segment length for cloze evaluation")
group.add_argument('--loss-func', type=str, choices=["cross_entropy", "hinge", "generative", "mix"],
default="cross_entropy")
group.add_argument('--block-lm-ratio', type=float, default=0.0)
group.add_argument('--adapet', action='store_true', help="Use the decoupled cross entropy loss in AdaPET")
group.add_argument('--pattern-id', type=int, default=0)
group.add_argument('--fast-decode', action='store_true',
help="Fast decode for multi-token cloze. Can only be used without checkpoint activation.")
group.add_argument('--few-superglue', action='store_true')
group.add_argument('--eval-valid', action='store_true', help="Whether evaluate on the valid set")
group.add_argument('--validation-metric', type=str, default=None)
group.add_argument('--unidirectional', action='store_true', help="Use the left to right language model")
group.add_argument('--src-seq-length', type=int, default=None)
group.add_argument('--tgt-seq-length', type=int, default=None)
group.add_argument('--adam-beta1', type=float, default=0.9)
group.add_argument('--adam-beta2', type=float, default=0.999)
group.add_argument('--adam-eps', type=float, default=1e-8)
group.add_argument('--optimizer', type=str, choices=['adam', 'adafactor'], default='adam')
group.add_argument('--wsc-negative', action='store_true')
group.add_argument('--overwrite', action='store_true')
group.add_argument('--no-validation', action='store_true')
# Continuous prompt arguments
group.add_argument('--continuous-prompt', action='store_true', help="Use continuous prompt for PET")
group.add_argument('--num-prompt-tokens', type=int, default=0)
group.add_argument('--prompt-func', default='lstm', choices=["lstm", "mlp", "none"])
group.add_argument('--freeze-transformer', action='store_true', default=False)
group.add_argument('--tune-prefix-layers', type=int, default=None)
group.add_argument('--prefix-prompt', type=int, default=0)
group.add_argument('--prompt-init', action='store_true', default=False)
return parser
def get_random_port():
def net_is_used(port,ip='127.0.0.1'):
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
try:
s.connect((ip,port))
s.shutdown(2)
return True
except:
return False
while True:
port = random.randint(10000,65535)
if net_is_used(port):
continue
else:
break
return port
def add_custom_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group('custom', 'custom configurations')
group.add_argument('--spare_port', type=int, default=get_random_port())
group.add_argument('--custom_tmp_result', type=str, default=None)
group.add_argument('--custom_first_eval', action='store_true')
group.add_argument('--custom_logits_paralle', action='store_true', help='forward_step中得到的logits是否是并行的,根据tasks自动设置,可用于蒸馏模型判断')
group.add_argument('--custom_current_epoch', type=int, default=0, help='当前的epoch,一般微调才有')
group.add_argument('--custom_no_save_checkpoint', action='store_true', help='不保存检查点和预测值,意味着目录只读取')
group.add_argument('--custom_no_summary_writer', action='store_true', help='不保tensorboard,意味着目录只读取')
group.add_argument('--forward_repeat_num', type=int, default=0, help='forward_step对相同数据多重复运行几次,1就代表数据会过2遍.运行loss结果累加,其他非loss值取第0次结果.evaluate的时候不会重复')
group.add_argument('--forward_repeat_current_n', type=int, default=0, help='当前是重复的第几次,自动分配不用设置,0表示无重复,1表示重复的第一次')
group.add_argument('--ignore_first_backward_gard', action='store_true', help='当forward_repeat_num大于0的时候是否忽略第1次反向传播的梯度,目前和梯度累积不兼容.可用于LRC_BERT的gradient perturbation等.evaluate时不考虑')
group.add_argument('--ft_final_save', action='store_true', help='是否在微调的最后一轮保存模型,将覆盖best模型latest_checkpointed_iteration')
group.add_argument('--save_interval_time', type=float, default=0, help='隔多少小时保存一次模型,大于0有效.可以和其他save参数一起使用')
group.add_argument('--zero_stage', type=int, default=0, help='zero_optimization.stage')
group.add_argument('--cpu_offload', action='store_true', help='zero_optimization.cpu_offload, zero_stage=1/2/3')
group.add_argument('--args_to_ds_config', action='store_true', help='args里面的 fp16/batch-size/gradient-accumulation-steps/zero_stage/cpu_offload 参数是否反向写入deepspeed配置文件,生成临时配置文件目录')
group.add_argument('--fix_variable_num_choices', action='store_true', help='对于一些多分类样本的nlu任务,使用这个保证每次样本的num_choices都保持一致.不够的0填充,多于max_candidates_per_question的则切掉尾部候选(尾部有标签的把标签放置在第0个)')
group.add_argument('--current_gradient_accumulation_steps', type=int, default=0, help='记录当前的gas,自动分配不用设置')
group.add_argument('--single_step', action='store_true', help='记录当前train_step中的single_step,自动分配不用设置,用于处理gradient_accumulation_steps问题')
# 注意: 以下可能和教师模型共享参数
group.add_argument('--map_vocab_size', type=float, default=0, help='映射的词数量,蒸馏或读取模型文件时使用.0-1表示占vacab-size的比例')
group.add_argument('--unmap_vocab_output', action='store_true', help='在使用map_vocab_size时GLM是否不返回映射后的结果,使用这个需要下游所有任务配合乱序且不全的词表,但可以减少时空消耗.可能导致一些使用logits的蒸馏(例如一些自定义的pre_loss)产生兼容性问题,同时因为维度变化可能导致一些任务的loss产生一点变化')
group.add_argument('--inverted_bottleneck_mode', action='store_true', help='可用于MobileBERT方法')
group.add_argument('--ib_hidden_size', type=int, default=128, help='IB结构中的隐层维度,线性层依然和--hidden-size一致')
group.add_argument('--ib_ffn_num', type=int, default=4, help='IB结构中的FFN重复次数')
group.add_argument('--ib_word_emb', type=int, default=0, help='IB结构中的词向量维度,None或0表示不使用.可以独立于inverted_bottleneck_mode使用,不会改变weight维度')
group.add_argument('--compress_word_emb', type=int, default=0, help='ALBERT词表压缩方法的词向量维度,None或0表示不使用.会改变weight维度')
group.add_argument('--cross_layer_parameter_sharing', action='store_true', help='共享所有transformer层参数')
return parser
def generate_unique():
return datetime.now().strftime('%y%m%d_%H%M%S.%f') + '_' + str(random.random())[2:]
def restructure_ds_config(args):
if not (hasattr(args, "deepspeed") and args.deepspeed and args.deepspeed_config is not None):
return False
with open(args.deepspeed_config) as file:
deepspeed_config = json.load(file)
has_change = False
if args.batch_size != deepspeed_config["train_micro_batch_size_per_gpu"]:
has_change = True
deepspeed_config["train_micro_batch_size_per_gpu"] = args.batch_size
print(f'>> ds.train_micro_batch_size_per_gpu -> {args.batch_size}')
if args.gradient_accumulation_steps != deepspeed_config["gradient_accumulation_steps"]:
has_change = True
deepspeed_config["gradient_accumulation_steps"] = args.gradient_accumulation_steps
print(f'>> ds.gradient_accumulation_steps -> {args.gradient_accumulation_steps}')
if args.fp16 != deepspeed_config.get('fp16', {}).get('enabled', {}):
has_change = True
deepspeed_config.setdefault('fp16', {})['enabled'] = args.fp16
print(f'>> ds.fp16.enabled -> {args.fp16}')
zero_stage = deepspeed_config.get('zero_optimization', {}).get('stage', {})
zero_stage = zero_stage if isinstance(zero_stage, int) else 0
if args.zero_stage != zero_stage:
has_change = True
if 'zero_optimization' not in deepspeed_config:
deepspeed_config['zero_optimization'] = {
'stage': args.zero_stage,
'contiguous_gradients': False,
'overlap_comm': True,
'reduce_scatter': True,
'reduce_bucket_size': 5e7,
'allgather_bucket_size': 5e7,
'cpu_offload': False,
}
deepspeed_config['zero_allow_untested_optimizer'] = True
print(f'>> ds.zero_optimization.zero_allow_untested_optimizer -> True')
else:
deepspeed_config['zero_optimization']['stage'] = args.zero_stage
zero_stage = args.zero_stage
print(f'>> ds.zero_optimization.stage -> {args.zero_stage}')
if args.cpu_offload != deepspeed_config.get('zero_optimization', {}).get('cpu_offload', {}) and zero_stage > 0:
has_change = True
deepspeed_config.setdefault('zero_optimization', {})['cpu_offload'] = args.cpu_offload
print(f'>> ds.zero_optimization.cpu_offload -> {args.cpu_offload}')
if not has_change:
return False
args.deepspeed_config = os.path.join('tmp_deepspeed_config', generate_unique() + '.json')
print(f'>> args.deepspeed_config -> {args.deepspeed_config}')
if not os.path.exists('tmp_deepspeed_config'):
os.mkdir('tmp_deepspeed_config')
with open(args.deepspeed_config, 'w', encoding='utf8') as w:
json.dump(deepspeed_config, w, ensure_ascii=False, indent=2, sort_keys=True)
return True
def get_args(arg_list=None):
"""Parse all the args."""
parser = argparse.ArgumentParser(description='PyTorch BERT Model')
parser = add_model_config_args(parser)
parser = add_fp16_config_args(parser)
parser = add_training_args(parser)
parser = add_evaluation_args(parser)
parser = add_text_generate_args(parser)
parser = add_data_args(parser)
parser = add_finetune_config_args(parser)
parser = add_custom_args(parser)
# Include DeepSpeed configuration arguments
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args(arg_list)
if not args.train_data and not args.data_dir:
print('WARNING: No training data specified')
args.cuda = torch.cuda.is_available()
args.rank = int(os.getenv('RANK', '0'))
args.world_size = int(os.getenv("WORLD_SIZE", '1'))
if hasattr(args, 'deepspeed_mpi') and args.deepspeed_mpi:
mpi_define_env(args)
elif os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'):
# We are using (OpenMPI) mpirun for launching distributed data parallel processes
local_rank = int(os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'))
local_size = int(os.getenv('OMPI_COMM_WORLD_LOCAL_SIZE'))
# Possibly running with Slurm
num_nodes = int(os.getenv('SLURM_JOB_NUM_NODES', '1'))
nodeid = int(os.getenv('SLURM_NODEID', '0'))
args.local_rank = local_rank
args.rank = nodeid * local_size + local_rank
args.world_size = num_nodes * local_size
args.model_parallel_size = min(args.model_parallel_size, args.world_size)
if args.rank == 0:
print('using world size: {} and model-parallel size: {} '.format(
args.world_size, args.model_parallel_size))
args.dynamic_loss_scale = False
if args.loss_scale is None:
args.dynamic_loss_scale = True
if args.rank == 0:
print(' > using dynamic loss scaling')
# The args fp32_* or fp16_* meant to be active when the
# args fp16 is set. So the default behaviour should all
# be false.
if not args.fp16:
args.fp32_embedding = False
args.fp32_tokentypes = False
args.fp32_layernorm = False
if args.args_to_ds_config:
restructure_ds_config(args)
if hasattr(args, "deepspeed") and args.deepspeed and args.deepspeed_config is not None:
with open(args.deepspeed_config) as file:
deepspeed_config = json.load(file)
if "train_micro_batch_size_per_gpu" in deepspeed_config:
args.batch_size = deepspeed_config["train_micro_batch_size_per_gpu"]
if "gradient_accumulation_steps" in deepspeed_config:
args.gradient_accumulation_steps = deepspeed_config["gradient_accumulation_steps"]
else:
args.gradient_accumulation_steps = 1
if "optimizer" in deepspeed_config:
optimizer_params_config = deepspeed_config["optimizer"].get("params", {})
args.lr = optimizer_params_config.get("lr", args.lr)
args.weight_decay = optimizer_params_config.get("weight_decay", args.weight_decay)
return args
def mpi_define_env(args):
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
world_size = comm.Get_size()
master_addr = None
if rank == 0:
master_addr = get_hostname()
master_addr = comm.bcast(master_addr, root=0)
# Determine local rank by assuming hostnames are unique
proc_name = MPI.Get_processor_name()
all_procs = comm.allgather(proc_name)
local_rank = sum([i == proc_name for i in all_procs[:rank]])
os.environ['RANK'] = str(rank)
os.environ['WORLD_SIZE'] = str(world_size)
args.local_rank = local_rank
args.world_size = world_size
args.rank = rank
os.environ['MASTER_ADDR'] = master_addr
os.environ['MASTER_PORT'] = "29500" # TORCH_DISTRIBUTED_DEFAULT_PORT = 29500
print(
"Discovered MPI settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}"
.format(os.environ['RANK'],
args.local_rank,
os.environ['WORLD_SIZE'],
os.environ['MASTER_ADDR'],
os.environ['MASTER_PORT']))