-
Notifications
You must be signed in to change notification settings - Fork 0
/
BATCH_NOGO.m
152 lines (106 loc) · 3.08 KB
/
BATCH_NOGO.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
function [] = BATCH_NOGO(pars)
%%%%% VISUAL SEARCH CONTAINER SCRIPT
%%% LOAD STANDARD PARAMETERS
DEFAULTS
%% MODIFY WEIGHTS FOR TESTING
%%% TRICKS
less_input_from_fovea = false;
more_input_from_periphery = false;
more_phasic_in_periphery = true;
fixation_nogo_on = false;
fovea_striatum_compensation = true;
input_normalised = false;
nogo_on = true;
%%%
BACKGROUND_NOISE = 0.0; % additive to everything
INPUT_NOISE = 0.02;
MEMB_NOISE = INPUT_NOISE;
%% GATING VER 3 WEIGHTS
% FEEDFORWARD_WEIGHT_GATING3 = 1.0;
% RECIPROCAL_WEIGHT_GATING3 = 0.0;
% ATTENTIONAL_WEIGHT_GATING3 = 0.3;
%
% FEEDBACK_WEIGHT_GATING3 = 2.5;
% FEATURE_INHIBITION_GATING3 = -0.0;
% OLD:
FEEDFORWARD_WEIGHT_GATING3 = 1.0;
RECIPROCAL_WEIGHT_GATING3 = 0.2;
ATTENTIONAL_WEIGHT_GATING3 = 0.0;
FEEDBACK_WEIGHT_GATING3 = 5.5;
FEEDBACK_WEIGHT_GATING3 = 3.5;
FEATURE_INHIBITION_GATING3 = -0.6;
% increasing the fef to thal seems to speed up the selection at no cost to
% accuracy.
THAL_2_FEF = 0.25;
FEF_2_THAL = 8.0;
LIP_TO_FEF = 2.0;
RETINA1_TO_SC_SUPERIOR = 0.0;
jon_model = false;
degrees_to_edge = 75;
% weights = good_vals_nd(1,:);
weights = zeros(11,1);
weights = [2.5 0.0 10.0 0.0 1.8 1.2 2.2 weights(8) 10.0 weights(10) weights(11)];
hack_model = true;
if hack_model == true;
weights = [2.5 0.0 5.0 0.0 1.0 1.6 2.0 weights(8) 10.0 weights(10) weights(11)];
end
SNR_TO_THAL = -weights(1);
SNR_TO_THAL_ADD = -weights(2);
SNR_TO_SC_BUILDUP = -weights(3);
SNR_TO_SC_BUILDUP_ADD = -weights(4);
STR_D1_TO_SNR = -weights(5);
STR_D2_TO_GPE = -weights(6);
STN_TO_SNR = weights(7); % NOTE: SCALED BY LAYER SIZE! SNR weight MUST = GPe weight
STN_TO_GPE = 1.0; % NOTE: SCALED BY LAYER SIZE!
FEF_TO_STN = weights(9);
THAL_TO_STN = weights(9);
% SC_BUILDUP_TO_THAL = weights(11);
if hack_model==true
GPE_TO_STN = -1.4;
GPE_TO_SNR = -0.4;%-weights(10);
end
%%%
%% Flags:
scopesOn = 0;
scopeOn = 0; %% vis scopes
reach_scopes = false;
concerto = false;
logging_on = 20; % 0 = none, 1 = light, 2 = heavy, higher numbers are task specific
%% Scopes:
scopeTarg = 'FEF/out>out';
scopeTarg2 = 'BG/STN/out>out';
scopeTargA = 'SC_buildup/out>out';
scopeTargB = 'BG/SNr/out>out';
%%% VISUAL SYSTEM SELECTION
%%% shunt add gate or dk or ver 3 - gate3 ...
%visSys = 'add3';
visModel = 'none';
taskType = 'NO_GO';
%% exePars
executionStop = 2.2;
fS = 400;
num_samples = fS * executionStop;
runString = ['_' taskType '_' int2str(pars.nogo) '_' int2str(pars.targ)];
%% Loop start:
%for biasMode=1:2
eval(['fileStr = ''perfdata' runString ''';']);
eval([fileStr ' = [];']);
runNum = pars.targ;
nogo_on = pars.nogo;
for repeatRun = 1:1
%%%%%%%%%%% RUN IT
overrideName = ['sys' runString];
targetMode = 1;
targetVals{1} = [0 0 1000];
RUN_MODEL
%% ANALYSE
timeTaken = out.orient.SG.target(2,end) - 0.2;
if timeTaken > 0;
eval([fileStr ' = [' fileStr '; timeTaken];']);
end
%% Loop end:
end
% save data
eval(['save ./dataTemp/' fileStr ' ' fileStr ';']);
%end
end