-
Notifications
You must be signed in to change notification settings - Fork 0
/
Visualisationlp (1) (1).py
101 lines (40 loc) · 934 Bytes
/
Visualisationlp (1) (1).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import numpy as np
import pandas as pd
import scipy.stats
# In[3]:
import matplotlib
import matplotlib.pyplot as np
import pandas.plotting
from IPython import display
from ipywidgets import interact,widgets
get_ipython().run_line_magic('matplotlib', 'inline')
# In[4]:
colleges=pd.read_csv('insti.csv')
# In[5]:
colleges.info()
# In[6]:
colleges.head()
# In[7]:
pd.DataFrame(colleges.Autonomous.value_counts())
# In[8]:
pd.DataFrame(colleges.district.value_counts())
# In[10]:
combined=colleges.groupby("Autonomous").district.value_counts()
combined
# In[11]:
combined.unstack()
# In[13]:
colleges.Autonomous.value_counts().plot(kind='bar')
# In[14]:
colleges.district.value_counts().plot(kind='bar')
# In[15]:
combined.plot(kind='bar')
# In[17]:
k=combined.unstack()
k.plot(kind='bar')
# In[19]:
k.plot(kind='barh')
# In[ ]: