-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathTDD.txt
executable file
·140 lines (93 loc) · 3.52 KB
/
TDD.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
Final goals
1. Working ELM, easy to use
2. All types of neurons in one model
3. BLUE solution and GPU acceleration
4. Model structure selection
5. Classification support, class weighting
6. Available from Matlab
7. Timeseries support
8. Distributed implementation
######################################################################
Notes
1. Universal neurons with 2 inputs - weight and bias,
suitable for RBF functions
2.
List of desired behaviour
1. Solve XOR problem with 'sigm' ELM
2. Solve Sine problem with 'sigm' ELM
3. Handle inputs normalization (parameters are given)
6. Read data from files: text and binary Numpy
7. Save and load ELM model
######################################################################
Acceptance testing
1. Solve XOR problem with one neuron
2. Approximate sine function with ELM
3. Run on all datasets from OP-ELM paper
Test SLFN correctness
Can load whatever Numpy matrix data
1. Send non-Numpy inputs, raise error
2. Send non-Numpy targets, raise error
3. Send 1-dim inputs, correct usage
4. Send 1-dim outputs, correct usage
5. Send inputs of different dimensionality, raise error
6. Send targets of different dimensionality, raise error
7. Send all-zero inputs, does not fail
8. Send all-zero targets, does not fail
9. Train with no neurons, raise error
10. X and T have different number of samples, raise error
11. Cannot have more linear neurons than input features
12. Linear neurons initialize an identity matrix
13. Add linear neurons, got them
14. Add sigm neurons, got them
15. Add tanh neurons, got them
16. Add rbf_l1 neurons, got them
17. Add rbf_l2 neurons, got them
18. Add rbf_linf neurons, got them
19. Add custom ufunc neurons, got them
20. Add two types of neurons
21. Add one type of neurons twice
22. Init with bias
23. Init with W
24. Init without bias and W, both non-zero
Test simple ELM performance
Run all benchmarks from the paper succesfully
1. Classification_Iris
2. Classification_Pima Indians Diabetes
3. Classification_Wine
4. Classification_Wisconsin Breast Cancer
5. Regression_Abalone
6. Regression_Ailerons
7. Regression_Auto price
8. Regression_Bank
9. Regression_Boston
10. Regression_Breast cancer
11. Regression_Computer
12. Regression_CPU
13. Regression_Elevators
14. Regression_Servo
15. Regression_Stocks
Test data loader
3a. Reshape 1-dim X and add bias
3b. Reshape 1-dim Y
3c. Test encoder 1-dim
3d. Test encoder 2-dim
3e. Test encoder string
3f. Test decoder 1-dim
3g. Test decoder string
3h. Classification - transform integer classes into one-out-of-all code
3i. Classification - transform anything to classes
3j. Get mean and std of training data
3k. Read text files with different delimiters
3l. Batch parameter works
3m. Data loader gets number of inputs
3n. Data loader gets number of targets
3o. Data loader gets number of targets for classification
3p. Data features consisting of 0, 1 and -1 are not normalized
Test model selection
1. Error functino works for regression
2. Error function works for classification
3. Pruning works with one neuron type
4. Pruning works with several neuron types
5. Run regression with a validation set
6. Run classification with a validation set
7. Validation with multiple types of neurons